Step |
Hyp |
Ref |
Expression |
1 |
|
sneq |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → { 𝐴 } = { if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) } ) |
2 |
1
|
fveq2d |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( span ‘ { 𝐴 } ) = ( span ‘ { if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) } ) ) |
3 |
1
|
fveq2d |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ⊥ ‘ { 𝐴 } ) = ( ⊥ ‘ { if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) } ) ) |
4 |
3
|
fveq2d |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) = ( ⊥ ‘ ( ⊥ ‘ { if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) } ) ) ) |
5 |
2 4
|
eqeq12d |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( span ‘ { 𝐴 } ) = ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) ↔ ( span ‘ { if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) } ) = ( ⊥ ‘ ( ⊥ ‘ { if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) } ) ) ) ) |
6 |
|
ifhvhv0 |
⊢ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ∈ ℋ |
7 |
6
|
spansni |
⊢ ( span ‘ { if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) } ) = ( ⊥ ‘ ( ⊥ ‘ { if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) } ) ) |
8 |
5 7
|
dedth |
⊢ ( 𝐴 ∈ ℋ → ( span ‘ { 𝐴 } ) = ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) ) |