| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sneq | ⊢ ( 𝐴  =  if ( 𝐴  ∈   ℋ ,  𝐴 ,  0ℎ )  →  { 𝐴 }  =  { if ( 𝐴  ∈   ℋ ,  𝐴 ,  0ℎ ) } ) | 
						
							| 2 | 1 | fveq2d | ⊢ ( 𝐴  =  if ( 𝐴  ∈   ℋ ,  𝐴 ,  0ℎ )  →  ( span ‘ { 𝐴 } )  =  ( span ‘ { if ( 𝐴  ∈   ℋ ,  𝐴 ,  0ℎ ) } ) ) | 
						
							| 3 | 1 | fveq2d | ⊢ ( 𝐴  =  if ( 𝐴  ∈   ℋ ,  𝐴 ,  0ℎ )  →  ( ⊥ ‘ { 𝐴 } )  =  ( ⊥ ‘ { if ( 𝐴  ∈   ℋ ,  𝐴 ,  0ℎ ) } ) ) | 
						
							| 4 | 3 | fveq2d | ⊢ ( 𝐴  =  if ( 𝐴  ∈   ℋ ,  𝐴 ,  0ℎ )  →  ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) )  =  ( ⊥ ‘ ( ⊥ ‘ { if ( 𝐴  ∈   ℋ ,  𝐴 ,  0ℎ ) } ) ) ) | 
						
							| 5 | 2 4 | eqeq12d | ⊢ ( 𝐴  =  if ( 𝐴  ∈   ℋ ,  𝐴 ,  0ℎ )  →  ( ( span ‘ { 𝐴 } )  =  ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) )  ↔  ( span ‘ { if ( 𝐴  ∈   ℋ ,  𝐴 ,  0ℎ ) } )  =  ( ⊥ ‘ ( ⊥ ‘ { if ( 𝐴  ∈   ℋ ,  𝐴 ,  0ℎ ) } ) ) ) ) | 
						
							| 6 |  | ifhvhv0 | ⊢ if ( 𝐴  ∈   ℋ ,  𝐴 ,  0ℎ )  ∈   ℋ | 
						
							| 7 | 6 | spansni | ⊢ ( span ‘ { if ( 𝐴  ∈   ℋ ,  𝐴 ,  0ℎ ) } )  =  ( ⊥ ‘ ( ⊥ ‘ { if ( 𝐴  ∈   ℋ ,  𝐴 ,  0ℎ ) } ) ) | 
						
							| 8 | 5 7 | dedth | ⊢ ( 𝐴  ∈   ℋ  →  ( span ‘ { 𝐴 } )  =  ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) ) |