Description: The span of the singleton of a vector is an atom. (Contributed by NM, 18-Dec-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | spansna | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( span ‘ { 𝐴 } ) ∈ HAtoms ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | spansn | ⊢ ( 𝐴 ∈ ℋ → ( span ‘ { 𝐴 } ) = ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( span ‘ { 𝐴 } ) = ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) ) | 
| 3 | h1da | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) ∈ HAtoms ) | |
| 4 | 2 3 | eqeltrd | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( span ‘ { 𝐴 } ) ∈ HAtoms ) |