| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mulcl | ⊢ ( ( 𝑦  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( 𝑦  ·  𝐵 )  ∈  ℂ ) | 
						
							| 2 | 1 | ancoms | ⊢ ( ( 𝐵  ∈  ℂ  ∧  𝑦  ∈  ℂ )  →  ( 𝑦  ·  𝐵 )  ∈  ℂ ) | 
						
							| 3 | 2 | adantll | ⊢ ( ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈  ℂ )  ∧  𝑦  ∈  ℂ )  →  ( 𝑦  ·  𝐵 )  ∈  ℂ ) | 
						
							| 4 |  | ax-hvmulass | ⊢ ( ( 𝑦  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐴  ∈   ℋ )  →  ( ( 𝑦  ·  𝐵 )  ·ℎ  𝐴 )  =  ( 𝑦  ·ℎ  ( 𝐵  ·ℎ  𝐴 ) ) ) | 
						
							| 5 | 4 | 3com13 | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈  ℂ  ∧  𝑦  ∈  ℂ )  →  ( ( 𝑦  ·  𝐵 )  ·ℎ  𝐴 )  =  ( 𝑦  ·ℎ  ( 𝐵  ·ℎ  𝐴 ) ) ) | 
						
							| 6 | 5 | 3expa | ⊢ ( ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈  ℂ )  ∧  𝑦  ∈  ℂ )  →  ( ( 𝑦  ·  𝐵 )  ·ℎ  𝐴 )  =  ( 𝑦  ·ℎ  ( 𝐵  ·ℎ  𝐴 ) ) ) | 
						
							| 7 | 6 | eqeq2d | ⊢ ( ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈  ℂ )  ∧  𝑦  ∈  ℂ )  →  ( 𝑥  =  ( ( 𝑦  ·  𝐵 )  ·ℎ  𝐴 )  ↔  𝑥  =  ( 𝑦  ·ℎ  ( 𝐵  ·ℎ  𝐴 ) ) ) ) | 
						
							| 8 | 7 | biimprd | ⊢ ( ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈  ℂ )  ∧  𝑦  ∈  ℂ )  →  ( 𝑥  =  ( 𝑦  ·ℎ  ( 𝐵  ·ℎ  𝐴 ) )  →  𝑥  =  ( ( 𝑦  ·  𝐵 )  ·ℎ  𝐴 ) ) ) | 
						
							| 9 |  | oveq1 | ⊢ ( 𝑧  =  ( 𝑦  ·  𝐵 )  →  ( 𝑧  ·ℎ  𝐴 )  =  ( ( 𝑦  ·  𝐵 )  ·ℎ  𝐴 ) ) | 
						
							| 10 | 9 | rspceeqv | ⊢ ( ( ( 𝑦  ·  𝐵 )  ∈  ℂ  ∧  𝑥  =  ( ( 𝑦  ·  𝐵 )  ·ℎ  𝐴 ) )  →  ∃ 𝑧  ∈  ℂ 𝑥  =  ( 𝑧  ·ℎ  𝐴 ) ) | 
						
							| 11 | 3 8 10 | syl6an | ⊢ ( ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈  ℂ )  ∧  𝑦  ∈  ℂ )  →  ( 𝑥  =  ( 𝑦  ·ℎ  ( 𝐵  ·ℎ  𝐴 ) )  →  ∃ 𝑧  ∈  ℂ 𝑥  =  ( 𝑧  ·ℎ  𝐴 ) ) ) | 
						
							| 12 | 11 | rexlimdva | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈  ℂ )  →  ( ∃ 𝑦  ∈  ℂ 𝑥  =  ( 𝑦  ·ℎ  ( 𝐵  ·ℎ  𝐴 ) )  →  ∃ 𝑧  ∈  ℂ 𝑥  =  ( 𝑧  ·ℎ  𝐴 ) ) ) | 
						
							| 13 | 12 | 3adant3 | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈  ℂ  ∧  𝐵  ≠  0 )  →  ( ∃ 𝑦  ∈  ℂ 𝑥  =  ( 𝑦  ·ℎ  ( 𝐵  ·ℎ  𝐴 ) )  →  ∃ 𝑧  ∈  ℂ 𝑥  =  ( 𝑧  ·ℎ  𝐴 ) ) ) | 
						
							| 14 |  | divcl | ⊢ ( ( 𝑧  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐵  ≠  0 )  →  ( 𝑧  /  𝐵 )  ∈  ℂ ) | 
						
							| 15 | 14 | 3expb | ⊢ ( ( 𝑧  ∈  ℂ  ∧  ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0 ) )  →  ( 𝑧  /  𝐵 )  ∈  ℂ ) | 
						
							| 16 | 15 | adantlr | ⊢ ( ( ( 𝑧  ∈  ℂ  ∧  𝐴  ∈   ℋ )  ∧  ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0 ) )  →  ( 𝑧  /  𝐵 )  ∈  ℂ ) | 
						
							| 17 |  | simprl | ⊢ ( ( ( 𝑧  ∈  ℂ  ∧  𝐴  ∈   ℋ )  ∧  ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0 ) )  →  𝐵  ∈  ℂ ) | 
						
							| 18 |  | simplr | ⊢ ( ( ( 𝑧  ∈  ℂ  ∧  𝐴  ∈   ℋ )  ∧  ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0 ) )  →  𝐴  ∈   ℋ ) | 
						
							| 19 |  | ax-hvmulass | ⊢ ( ( ( 𝑧  /  𝐵 )  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐴  ∈   ℋ )  →  ( ( ( 𝑧  /  𝐵 )  ·  𝐵 )  ·ℎ  𝐴 )  =  ( ( 𝑧  /  𝐵 )  ·ℎ  ( 𝐵  ·ℎ  𝐴 ) ) ) | 
						
							| 20 | 16 17 18 19 | syl3anc | ⊢ ( ( ( 𝑧  ∈  ℂ  ∧  𝐴  ∈   ℋ )  ∧  ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0 ) )  →  ( ( ( 𝑧  /  𝐵 )  ·  𝐵 )  ·ℎ  𝐴 )  =  ( ( 𝑧  /  𝐵 )  ·ℎ  ( 𝐵  ·ℎ  𝐴 ) ) ) | 
						
							| 21 |  | divcan1 | ⊢ ( ( 𝑧  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐵  ≠  0 )  →  ( ( 𝑧  /  𝐵 )  ·  𝐵 )  =  𝑧 ) | 
						
							| 22 | 21 | 3expb | ⊢ ( ( 𝑧  ∈  ℂ  ∧  ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0 ) )  →  ( ( 𝑧  /  𝐵 )  ·  𝐵 )  =  𝑧 ) | 
						
							| 23 | 22 | adantlr | ⊢ ( ( ( 𝑧  ∈  ℂ  ∧  𝐴  ∈   ℋ )  ∧  ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0 ) )  →  ( ( 𝑧  /  𝐵 )  ·  𝐵 )  =  𝑧 ) | 
						
							| 24 | 23 | oveq1d | ⊢ ( ( ( 𝑧  ∈  ℂ  ∧  𝐴  ∈   ℋ )  ∧  ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0 ) )  →  ( ( ( 𝑧  /  𝐵 )  ·  𝐵 )  ·ℎ  𝐴 )  =  ( 𝑧  ·ℎ  𝐴 ) ) | 
						
							| 25 | 20 24 | eqtr3d | ⊢ ( ( ( 𝑧  ∈  ℂ  ∧  𝐴  ∈   ℋ )  ∧  ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0 ) )  →  ( ( 𝑧  /  𝐵 )  ·ℎ  ( 𝐵  ·ℎ  𝐴 ) )  =  ( 𝑧  ·ℎ  𝐴 ) ) | 
						
							| 26 | 25 | eqeq2d | ⊢ ( ( ( 𝑧  ∈  ℂ  ∧  𝐴  ∈   ℋ )  ∧  ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0 ) )  →  ( 𝑥  =  ( ( 𝑧  /  𝐵 )  ·ℎ  ( 𝐵  ·ℎ  𝐴 ) )  ↔  𝑥  =  ( 𝑧  ·ℎ  𝐴 ) ) ) | 
						
							| 27 | 26 | biimprd | ⊢ ( ( ( 𝑧  ∈  ℂ  ∧  𝐴  ∈   ℋ )  ∧  ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0 ) )  →  ( 𝑥  =  ( 𝑧  ·ℎ  𝐴 )  →  𝑥  =  ( ( 𝑧  /  𝐵 )  ·ℎ  ( 𝐵  ·ℎ  𝐴 ) ) ) ) | 
						
							| 28 |  | oveq1 | ⊢ ( 𝑦  =  ( 𝑧  /  𝐵 )  →  ( 𝑦  ·ℎ  ( 𝐵  ·ℎ  𝐴 ) )  =  ( ( 𝑧  /  𝐵 )  ·ℎ  ( 𝐵  ·ℎ  𝐴 ) ) ) | 
						
							| 29 | 28 | rspceeqv | ⊢ ( ( ( 𝑧  /  𝐵 )  ∈  ℂ  ∧  𝑥  =  ( ( 𝑧  /  𝐵 )  ·ℎ  ( 𝐵  ·ℎ  𝐴 ) ) )  →  ∃ 𝑦  ∈  ℂ 𝑥  =  ( 𝑦  ·ℎ  ( 𝐵  ·ℎ  𝐴 ) ) ) | 
						
							| 30 | 16 27 29 | syl6an | ⊢ ( ( ( 𝑧  ∈  ℂ  ∧  𝐴  ∈   ℋ )  ∧  ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0 ) )  →  ( 𝑥  =  ( 𝑧  ·ℎ  𝐴 )  →  ∃ 𝑦  ∈  ℂ 𝑥  =  ( 𝑦  ·ℎ  ( 𝐵  ·ℎ  𝐴 ) ) ) ) | 
						
							| 31 | 30 | exp43 | ⊢ ( 𝑧  ∈  ℂ  →  ( 𝐴  ∈   ℋ  →  ( 𝐵  ∈  ℂ  →  ( 𝐵  ≠  0  →  ( 𝑥  =  ( 𝑧  ·ℎ  𝐴 )  →  ∃ 𝑦  ∈  ℂ 𝑥  =  ( 𝑦  ·ℎ  ( 𝐵  ·ℎ  𝐴 ) ) ) ) ) ) ) | 
						
							| 32 | 31 | com4l | ⊢ ( 𝐴  ∈   ℋ  →  ( 𝐵  ∈  ℂ  →  ( 𝐵  ≠  0  →  ( 𝑧  ∈  ℂ  →  ( 𝑥  =  ( 𝑧  ·ℎ  𝐴 )  →  ∃ 𝑦  ∈  ℂ 𝑥  =  ( 𝑦  ·ℎ  ( 𝐵  ·ℎ  𝐴 ) ) ) ) ) ) ) | 
						
							| 33 | 32 | 3imp | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈  ℂ  ∧  𝐵  ≠  0 )  →  ( 𝑧  ∈  ℂ  →  ( 𝑥  =  ( 𝑧  ·ℎ  𝐴 )  →  ∃ 𝑦  ∈  ℂ 𝑥  =  ( 𝑦  ·ℎ  ( 𝐵  ·ℎ  𝐴 ) ) ) ) ) | 
						
							| 34 | 33 | rexlimdv | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈  ℂ  ∧  𝐵  ≠  0 )  →  ( ∃ 𝑧  ∈  ℂ 𝑥  =  ( 𝑧  ·ℎ  𝐴 )  →  ∃ 𝑦  ∈  ℂ 𝑥  =  ( 𝑦  ·ℎ  ( 𝐵  ·ℎ  𝐴 ) ) ) ) | 
						
							| 35 | 13 34 | impbid | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈  ℂ  ∧  𝐵  ≠  0 )  →  ( ∃ 𝑦  ∈  ℂ 𝑥  =  ( 𝑦  ·ℎ  ( 𝐵  ·ℎ  𝐴 ) )  ↔  ∃ 𝑧  ∈  ℂ 𝑥  =  ( 𝑧  ·ℎ  𝐴 ) ) ) | 
						
							| 36 |  | hvmulcl | ⊢ ( ( 𝐵  ∈  ℂ  ∧  𝐴  ∈   ℋ )  →  ( 𝐵  ·ℎ  𝐴 )  ∈   ℋ ) | 
						
							| 37 | 36 | ancoms | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈  ℂ )  →  ( 𝐵  ·ℎ  𝐴 )  ∈   ℋ ) | 
						
							| 38 |  | elspansn | ⊢ ( ( 𝐵  ·ℎ  𝐴 )  ∈   ℋ  →  ( 𝑥  ∈  ( span ‘ { ( 𝐵  ·ℎ  𝐴 ) } )  ↔  ∃ 𝑦  ∈  ℂ 𝑥  =  ( 𝑦  ·ℎ  ( 𝐵  ·ℎ  𝐴 ) ) ) ) | 
						
							| 39 | 37 38 | syl | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈  ℂ )  →  ( 𝑥  ∈  ( span ‘ { ( 𝐵  ·ℎ  𝐴 ) } )  ↔  ∃ 𝑦  ∈  ℂ 𝑥  =  ( 𝑦  ·ℎ  ( 𝐵  ·ℎ  𝐴 ) ) ) ) | 
						
							| 40 | 39 | 3adant3 | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈  ℂ  ∧  𝐵  ≠  0 )  →  ( 𝑥  ∈  ( span ‘ { ( 𝐵  ·ℎ  𝐴 ) } )  ↔  ∃ 𝑦  ∈  ℂ 𝑥  =  ( 𝑦  ·ℎ  ( 𝐵  ·ℎ  𝐴 ) ) ) ) | 
						
							| 41 |  | elspansn | ⊢ ( 𝐴  ∈   ℋ  →  ( 𝑥  ∈  ( span ‘ { 𝐴 } )  ↔  ∃ 𝑧  ∈  ℂ 𝑥  =  ( 𝑧  ·ℎ  𝐴 ) ) ) | 
						
							| 42 | 41 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈  ℂ  ∧  𝐵  ≠  0 )  →  ( 𝑥  ∈  ( span ‘ { 𝐴 } )  ↔  ∃ 𝑧  ∈  ℂ 𝑥  =  ( 𝑧  ·ℎ  𝐴 ) ) ) | 
						
							| 43 | 35 40 42 | 3bitr4d | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈  ℂ  ∧  𝐵  ≠  0 )  →  ( 𝑥  ∈  ( span ‘ { ( 𝐵  ·ℎ  𝐴 ) } )  ↔  𝑥  ∈  ( span ‘ { 𝐴 } ) ) ) | 
						
							| 44 | 43 | eqrdv | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈  ℂ  ∧  𝐵  ≠  0 )  →  ( span ‘ { ( 𝐵  ·ℎ  𝐴 ) } )  =  ( span ‘ { 𝐴 } ) ) |