Step |
Hyp |
Ref |
Expression |
1 |
|
mulcl |
⊢ ( ( 𝑦 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝑦 · 𝐵 ) ∈ ℂ ) |
2 |
1
|
ancoms |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑦 · 𝐵 ) ∈ ℂ ) |
3 |
2
|
adantll |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℂ ) → ( 𝑦 · 𝐵 ) ∈ ℂ ) |
4 |
|
ax-hvmulass |
⊢ ( ( 𝑦 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℋ ) → ( ( 𝑦 · 𝐵 ) ·ℎ 𝐴 ) = ( 𝑦 ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) ) |
5 |
4
|
3com13 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( 𝑦 · 𝐵 ) ·ℎ 𝐴 ) = ( 𝑦 ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) ) |
6 |
5
|
3expa |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℂ ) → ( ( 𝑦 · 𝐵 ) ·ℎ 𝐴 ) = ( 𝑦 ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) ) |
7 |
6
|
eqeq2d |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℂ ) → ( 𝑥 = ( ( 𝑦 · 𝐵 ) ·ℎ 𝐴 ) ↔ 𝑥 = ( 𝑦 ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) ) ) |
8 |
7
|
biimprd |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℂ ) → ( 𝑥 = ( 𝑦 ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) → 𝑥 = ( ( 𝑦 · 𝐵 ) ·ℎ 𝐴 ) ) ) |
9 |
|
oveq1 |
⊢ ( 𝑧 = ( 𝑦 · 𝐵 ) → ( 𝑧 ·ℎ 𝐴 ) = ( ( 𝑦 · 𝐵 ) ·ℎ 𝐴 ) ) |
10 |
9
|
rspceeqv |
⊢ ( ( ( 𝑦 · 𝐵 ) ∈ ℂ ∧ 𝑥 = ( ( 𝑦 · 𝐵 ) ·ℎ 𝐴 ) ) → ∃ 𝑧 ∈ ℂ 𝑥 = ( 𝑧 ·ℎ 𝐴 ) ) |
11 |
3 8 10
|
syl6an |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ) ∧ 𝑦 ∈ ℂ ) → ( 𝑥 = ( 𝑦 ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) → ∃ 𝑧 ∈ ℂ 𝑥 = ( 𝑧 ·ℎ 𝐴 ) ) ) |
12 |
11
|
rexlimdva |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ) → ( ∃ 𝑦 ∈ ℂ 𝑥 = ( 𝑦 ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) → ∃ 𝑧 ∈ ℂ 𝑥 = ( 𝑧 ·ℎ 𝐴 ) ) ) |
13 |
12
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ∃ 𝑦 ∈ ℂ 𝑥 = ( 𝑦 ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) → ∃ 𝑧 ∈ ℂ 𝑥 = ( 𝑧 ·ℎ 𝐴 ) ) ) |
14 |
|
divcl |
⊢ ( ( 𝑧 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝑧 / 𝐵 ) ∈ ℂ ) |
15 |
14
|
3expb |
⊢ ( ( 𝑧 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( 𝑧 / 𝐵 ) ∈ ℂ ) |
16 |
15
|
adantlr |
⊢ ( ( ( 𝑧 ∈ ℂ ∧ 𝐴 ∈ ℋ ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( 𝑧 / 𝐵 ) ∈ ℂ ) |
17 |
|
simprl |
⊢ ( ( ( 𝑧 ∈ ℂ ∧ 𝐴 ∈ ℋ ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → 𝐵 ∈ ℂ ) |
18 |
|
simplr |
⊢ ( ( ( 𝑧 ∈ ℂ ∧ 𝐴 ∈ ℋ ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → 𝐴 ∈ ℋ ) |
19 |
|
ax-hvmulass |
⊢ ( ( ( 𝑧 / 𝐵 ) ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℋ ) → ( ( ( 𝑧 / 𝐵 ) · 𝐵 ) ·ℎ 𝐴 ) = ( ( 𝑧 / 𝐵 ) ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) ) |
20 |
16 17 18 19
|
syl3anc |
⊢ ( ( ( 𝑧 ∈ ℂ ∧ 𝐴 ∈ ℋ ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( ( 𝑧 / 𝐵 ) · 𝐵 ) ·ℎ 𝐴 ) = ( ( 𝑧 / 𝐵 ) ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) ) |
21 |
|
divcan1 |
⊢ ( ( 𝑧 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ( 𝑧 / 𝐵 ) · 𝐵 ) = 𝑧 ) |
22 |
21
|
3expb |
⊢ ( ( 𝑧 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( 𝑧 / 𝐵 ) · 𝐵 ) = 𝑧 ) |
23 |
22
|
adantlr |
⊢ ( ( ( 𝑧 ∈ ℂ ∧ 𝐴 ∈ ℋ ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( 𝑧 / 𝐵 ) · 𝐵 ) = 𝑧 ) |
24 |
23
|
oveq1d |
⊢ ( ( ( 𝑧 ∈ ℂ ∧ 𝐴 ∈ ℋ ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( ( 𝑧 / 𝐵 ) · 𝐵 ) ·ℎ 𝐴 ) = ( 𝑧 ·ℎ 𝐴 ) ) |
25 |
20 24
|
eqtr3d |
⊢ ( ( ( 𝑧 ∈ ℂ ∧ 𝐴 ∈ ℋ ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( 𝑧 / 𝐵 ) ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) = ( 𝑧 ·ℎ 𝐴 ) ) |
26 |
25
|
eqeq2d |
⊢ ( ( ( 𝑧 ∈ ℂ ∧ 𝐴 ∈ ℋ ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( 𝑥 = ( ( 𝑧 / 𝐵 ) ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) ↔ 𝑥 = ( 𝑧 ·ℎ 𝐴 ) ) ) |
27 |
26
|
biimprd |
⊢ ( ( ( 𝑧 ∈ ℂ ∧ 𝐴 ∈ ℋ ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( 𝑥 = ( 𝑧 ·ℎ 𝐴 ) → 𝑥 = ( ( 𝑧 / 𝐵 ) ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) ) ) |
28 |
|
oveq1 |
⊢ ( 𝑦 = ( 𝑧 / 𝐵 ) → ( 𝑦 ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) = ( ( 𝑧 / 𝐵 ) ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) ) |
29 |
28
|
rspceeqv |
⊢ ( ( ( 𝑧 / 𝐵 ) ∈ ℂ ∧ 𝑥 = ( ( 𝑧 / 𝐵 ) ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) ) → ∃ 𝑦 ∈ ℂ 𝑥 = ( 𝑦 ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) ) |
30 |
16 27 29
|
syl6an |
⊢ ( ( ( 𝑧 ∈ ℂ ∧ 𝐴 ∈ ℋ ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( 𝑥 = ( 𝑧 ·ℎ 𝐴 ) → ∃ 𝑦 ∈ ℂ 𝑥 = ( 𝑦 ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) ) ) |
31 |
30
|
exp43 |
⊢ ( 𝑧 ∈ ℂ → ( 𝐴 ∈ ℋ → ( 𝐵 ∈ ℂ → ( 𝐵 ≠ 0 → ( 𝑥 = ( 𝑧 ·ℎ 𝐴 ) → ∃ 𝑦 ∈ ℂ 𝑥 = ( 𝑦 ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) ) ) ) ) ) |
32 |
31
|
com4l |
⊢ ( 𝐴 ∈ ℋ → ( 𝐵 ∈ ℂ → ( 𝐵 ≠ 0 → ( 𝑧 ∈ ℂ → ( 𝑥 = ( 𝑧 ·ℎ 𝐴 ) → ∃ 𝑦 ∈ ℂ 𝑥 = ( 𝑦 ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) ) ) ) ) ) |
33 |
32
|
3imp |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝑧 ∈ ℂ → ( 𝑥 = ( 𝑧 ·ℎ 𝐴 ) → ∃ 𝑦 ∈ ℂ 𝑥 = ( 𝑦 ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) ) ) ) |
34 |
33
|
rexlimdv |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ∃ 𝑧 ∈ ℂ 𝑥 = ( 𝑧 ·ℎ 𝐴 ) → ∃ 𝑦 ∈ ℂ 𝑥 = ( 𝑦 ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) ) ) |
35 |
13 34
|
impbid |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ∃ 𝑦 ∈ ℂ 𝑥 = ( 𝑦 ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) ↔ ∃ 𝑧 ∈ ℂ 𝑥 = ( 𝑧 ·ℎ 𝐴 ) ) ) |
36 |
|
hvmulcl |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℋ ) → ( 𝐵 ·ℎ 𝐴 ) ∈ ℋ ) |
37 |
36
|
ancoms |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ) → ( 𝐵 ·ℎ 𝐴 ) ∈ ℋ ) |
38 |
|
elspansn |
⊢ ( ( 𝐵 ·ℎ 𝐴 ) ∈ ℋ → ( 𝑥 ∈ ( span ‘ { ( 𝐵 ·ℎ 𝐴 ) } ) ↔ ∃ 𝑦 ∈ ℂ 𝑥 = ( 𝑦 ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) ) ) |
39 |
37 38
|
syl |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ) → ( 𝑥 ∈ ( span ‘ { ( 𝐵 ·ℎ 𝐴 ) } ) ↔ ∃ 𝑦 ∈ ℂ 𝑥 = ( 𝑦 ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) ) ) |
40 |
39
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝑥 ∈ ( span ‘ { ( 𝐵 ·ℎ 𝐴 ) } ) ↔ ∃ 𝑦 ∈ ℂ 𝑥 = ( 𝑦 ·ℎ ( 𝐵 ·ℎ 𝐴 ) ) ) ) |
41 |
|
elspansn |
⊢ ( 𝐴 ∈ ℋ → ( 𝑥 ∈ ( span ‘ { 𝐴 } ) ↔ ∃ 𝑧 ∈ ℂ 𝑥 = ( 𝑧 ·ℎ 𝐴 ) ) ) |
42 |
41
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝑥 ∈ ( span ‘ { 𝐴 } ) ↔ ∃ 𝑧 ∈ ℂ 𝑥 = ( 𝑧 ·ℎ 𝐴 ) ) ) |
43 |
35 40 42
|
3bitr4d |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝑥 ∈ ( span ‘ { ( 𝐵 ·ℎ 𝐴 ) } ) ↔ 𝑥 ∈ ( span ‘ { 𝐴 } ) ) ) |
44 |
43
|
eqrdv |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( span ‘ { ( 𝐵 ·ℎ 𝐴 ) } ) = ( span ‘ { 𝐴 } ) ) |