| Step |
Hyp |
Ref |
Expression |
| 1 |
|
spansncv |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝑥 ∈ Cℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊆ ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) ) → 𝑥 = ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) ) ) |
| 2 |
1
|
3exp |
⊢ ( 𝐴 ∈ Cℋ → ( 𝑥 ∈ Cℋ → ( 𝐵 ∈ ℋ → ( ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊆ ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) ) → 𝑥 = ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) ) ) ) ) |
| 3 |
2
|
com23 |
⊢ ( 𝐴 ∈ Cℋ → ( 𝐵 ∈ ℋ → ( 𝑥 ∈ Cℋ → ( ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊆ ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) ) → 𝑥 = ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) ) ) ) ) |
| 4 |
3
|
imp |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ ℋ ) → ( 𝑥 ∈ Cℋ → ( ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊆ ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) ) → 𝑥 = ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) ) ) ) |
| 5 |
4
|
ralrimiv |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ ℋ ) → ∀ 𝑥 ∈ Cℋ ( ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊆ ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) ) → 𝑥 = ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) ) ) |
| 6 |
5
|
anim2i |
⊢ ( ( 𝐴 ⊊ ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) ∧ ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ ℋ ) ) → ( 𝐴 ⊊ ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) ∧ ∀ 𝑥 ∈ Cℋ ( ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊆ ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) ) → 𝑥 = ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) ) ) ) |
| 7 |
6
|
expcom |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ⊊ ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) → ( 𝐴 ⊊ ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) ∧ ∀ 𝑥 ∈ Cℋ ( ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊆ ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) ) → 𝑥 = ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) ) ) ) ) |
| 8 |
|
spansnch |
⊢ ( 𝐵 ∈ ℋ → ( span ‘ { 𝐵 } ) ∈ Cℋ ) |
| 9 |
|
chnle |
⊢ ( ( 𝐴 ∈ Cℋ ∧ ( span ‘ { 𝐵 } ) ∈ Cℋ ) → ( ¬ ( span ‘ { 𝐵 } ) ⊆ 𝐴 ↔ 𝐴 ⊊ ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) ) ) |
| 10 |
8 9
|
sylan2 |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ ℋ ) → ( ¬ ( span ‘ { 𝐵 } ) ⊆ 𝐴 ↔ 𝐴 ⊊ ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) ) ) |
| 11 |
|
chjcl |
⊢ ( ( 𝐴 ∈ Cℋ ∧ ( span ‘ { 𝐵 } ) ∈ Cℋ ) → ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) ∈ Cℋ ) |
| 12 |
8 11
|
sylan2 |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) ∈ Cℋ ) |
| 13 |
|
cvbr2 |
⊢ ( ( 𝐴 ∈ Cℋ ∧ ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) ∈ Cℋ ) → ( 𝐴 ⋖ℋ ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) ↔ ( 𝐴 ⊊ ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) ∧ ∀ 𝑥 ∈ Cℋ ( ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊆ ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) ) → 𝑥 = ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) ) ) ) ) |
| 14 |
12 13
|
syldan |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ⋖ℋ ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) ↔ ( 𝐴 ⊊ ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) ∧ ∀ 𝑥 ∈ Cℋ ( ( 𝐴 ⊊ 𝑥 ∧ 𝑥 ⊆ ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) ) → 𝑥 = ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) ) ) ) ) |
| 15 |
7 10 14
|
3imtr4d |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ ℋ ) → ( ¬ ( span ‘ { 𝐵 } ) ⊆ 𝐴 → 𝐴 ⋖ℋ ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) ) ) |