| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elspansn | ⊢ ( 𝐵  ∈   ℋ  →  ( 𝐴  ∈  ( span ‘ { 𝐵 } )  ↔  ∃ 𝑥  ∈  ℂ 𝐴  =  ( 𝑥  ·ℎ  𝐵 ) ) ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( 𝐵  ∈   ℋ  ∧  𝐴  ≠  0ℎ )  →  ( 𝐴  ∈  ( span ‘ { 𝐵 } )  ↔  ∃ 𝑥  ∈  ℂ 𝐴  =  ( 𝑥  ·ℎ  𝐵 ) ) ) | 
						
							| 3 |  | sneq | ⊢ ( 𝐴  =  ( 𝑥  ·ℎ  𝐵 )  →  { 𝐴 }  =  { ( 𝑥  ·ℎ  𝐵 ) } ) | 
						
							| 4 | 3 | fveq2d | ⊢ ( 𝐴  =  ( 𝑥  ·ℎ  𝐵 )  →  ( span ‘ { 𝐴 } )  =  ( span ‘ { ( 𝑥  ·ℎ  𝐵 ) } ) ) | 
						
							| 5 | 4 | ad2antll | ⊢ ( ( ( 𝐵  ∈   ℋ  ∧  𝐴  ≠  0ℎ )  ∧  ( 𝑥  ∈  ℂ  ∧  𝐴  =  ( 𝑥  ·ℎ  𝐵 ) ) )  →  ( span ‘ { 𝐴 } )  =  ( span ‘ { ( 𝑥  ·ℎ  𝐵 ) } ) ) | 
						
							| 6 |  | oveq1 | ⊢ ( 𝑥  =  0  →  ( 𝑥  ·ℎ  𝐵 )  =  ( 0  ·ℎ  𝐵 ) ) | 
						
							| 7 |  | ax-hvmul0 | ⊢ ( 𝐵  ∈   ℋ  →  ( 0  ·ℎ  𝐵 )  =  0ℎ ) | 
						
							| 8 | 6 7 | sylan9eqr | ⊢ ( ( 𝐵  ∈   ℋ  ∧  𝑥  =  0 )  →  ( 𝑥  ·ℎ  𝐵 )  =  0ℎ ) | 
						
							| 9 | 8 | ex | ⊢ ( 𝐵  ∈   ℋ  →  ( 𝑥  =  0  →  ( 𝑥  ·ℎ  𝐵 )  =  0ℎ ) ) | 
						
							| 10 |  | eqeq1 | ⊢ ( 𝐴  =  ( 𝑥  ·ℎ  𝐵 )  →  ( 𝐴  =  0ℎ  ↔  ( 𝑥  ·ℎ  𝐵 )  =  0ℎ ) ) | 
						
							| 11 | 10 | biimprd | ⊢ ( 𝐴  =  ( 𝑥  ·ℎ  𝐵 )  →  ( ( 𝑥  ·ℎ  𝐵 )  =  0ℎ  →  𝐴  =  0ℎ ) ) | 
						
							| 12 | 9 11 | sylan9 | ⊢ ( ( 𝐵  ∈   ℋ  ∧  𝐴  =  ( 𝑥  ·ℎ  𝐵 ) )  →  ( 𝑥  =  0  →  𝐴  =  0ℎ ) ) | 
						
							| 13 | 12 | necon3d | ⊢ ( ( 𝐵  ∈   ℋ  ∧  𝐴  =  ( 𝑥  ·ℎ  𝐵 ) )  →  ( 𝐴  ≠  0ℎ  →  𝑥  ≠  0 ) ) | 
						
							| 14 | 13 | ex | ⊢ ( 𝐵  ∈   ℋ  →  ( 𝐴  =  ( 𝑥  ·ℎ  𝐵 )  →  ( 𝐴  ≠  0ℎ  →  𝑥  ≠  0 ) ) ) | 
						
							| 15 | 14 | com23 | ⊢ ( 𝐵  ∈   ℋ  →  ( 𝐴  ≠  0ℎ  →  ( 𝐴  =  ( 𝑥  ·ℎ  𝐵 )  →  𝑥  ≠  0 ) ) ) | 
						
							| 16 | 15 | impd | ⊢ ( 𝐵  ∈   ℋ  →  ( ( 𝐴  ≠  0ℎ  ∧  𝐴  =  ( 𝑥  ·ℎ  𝐵 ) )  →  𝑥  ≠  0 ) ) | 
						
							| 17 | 16 | adantr | ⊢ ( ( 𝐵  ∈   ℋ  ∧  𝑥  ∈  ℂ )  →  ( ( 𝐴  ≠  0ℎ  ∧  𝐴  =  ( 𝑥  ·ℎ  𝐵 ) )  →  𝑥  ≠  0 ) ) | 
						
							| 18 |  | spansncol | ⊢ ( ( 𝐵  ∈   ℋ  ∧  𝑥  ∈  ℂ  ∧  𝑥  ≠  0 )  →  ( span ‘ { ( 𝑥  ·ℎ  𝐵 ) } )  =  ( span ‘ { 𝐵 } ) ) | 
						
							| 19 | 18 | 3expia | ⊢ ( ( 𝐵  ∈   ℋ  ∧  𝑥  ∈  ℂ )  →  ( 𝑥  ≠  0  →  ( span ‘ { ( 𝑥  ·ℎ  𝐵 ) } )  =  ( span ‘ { 𝐵 } ) ) ) | 
						
							| 20 | 17 19 | syld | ⊢ ( ( 𝐵  ∈   ℋ  ∧  𝑥  ∈  ℂ )  →  ( ( 𝐴  ≠  0ℎ  ∧  𝐴  =  ( 𝑥  ·ℎ  𝐵 ) )  →  ( span ‘ { ( 𝑥  ·ℎ  𝐵 ) } )  =  ( span ‘ { 𝐵 } ) ) ) | 
						
							| 21 | 20 | exp4b | ⊢ ( 𝐵  ∈   ℋ  →  ( 𝑥  ∈  ℂ  →  ( 𝐴  ≠  0ℎ  →  ( 𝐴  =  ( 𝑥  ·ℎ  𝐵 )  →  ( span ‘ { ( 𝑥  ·ℎ  𝐵 ) } )  =  ( span ‘ { 𝐵 } ) ) ) ) ) | 
						
							| 22 | 21 | com23 | ⊢ ( 𝐵  ∈   ℋ  →  ( 𝐴  ≠  0ℎ  →  ( 𝑥  ∈  ℂ  →  ( 𝐴  =  ( 𝑥  ·ℎ  𝐵 )  →  ( span ‘ { ( 𝑥  ·ℎ  𝐵 ) } )  =  ( span ‘ { 𝐵 } ) ) ) ) ) | 
						
							| 23 | 22 | imp43 | ⊢ ( ( ( 𝐵  ∈   ℋ  ∧  𝐴  ≠  0ℎ )  ∧  ( 𝑥  ∈  ℂ  ∧  𝐴  =  ( 𝑥  ·ℎ  𝐵 ) ) )  →  ( span ‘ { ( 𝑥  ·ℎ  𝐵 ) } )  =  ( span ‘ { 𝐵 } ) ) | 
						
							| 24 | 5 23 | eqtrd | ⊢ ( ( ( 𝐵  ∈   ℋ  ∧  𝐴  ≠  0ℎ )  ∧  ( 𝑥  ∈  ℂ  ∧  𝐴  =  ( 𝑥  ·ℎ  𝐵 ) ) )  →  ( span ‘ { 𝐴 } )  =  ( span ‘ { 𝐵 } ) ) | 
						
							| 25 | 24 | rexlimdvaa | ⊢ ( ( 𝐵  ∈   ℋ  ∧  𝐴  ≠  0ℎ )  →  ( ∃ 𝑥  ∈  ℂ 𝐴  =  ( 𝑥  ·ℎ  𝐵 )  →  ( span ‘ { 𝐴 } )  =  ( span ‘ { 𝐵 } ) ) ) | 
						
							| 26 | 2 25 | sylbid | ⊢ ( ( 𝐵  ∈   ℋ  ∧  𝐴  ≠  0ℎ )  →  ( 𝐴  ∈  ( span ‘ { 𝐵 } )  →  ( span ‘ { 𝐴 } )  =  ( span ‘ { 𝐵 } ) ) ) |