Metamath Proof Explorer


Theorem spansneleqi

Description: Membership relation implied by equality of spans. (Contributed by NM, 6-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion spansneleqi ( 𝐴 ∈ ℋ → ( ( span ‘ { 𝐴 } ) = ( span ‘ { 𝐵 } ) → 𝐴 ∈ ( span ‘ { 𝐵 } ) ) )

Proof

Step Hyp Ref Expression
1 spansnid ( 𝐴 ∈ ℋ → 𝐴 ∈ ( span ‘ { 𝐴 } ) )
2 eleq2 ( ( span ‘ { 𝐴 } ) = ( span ‘ { 𝐵 } ) → ( 𝐴 ∈ ( span ‘ { 𝐴 } ) ↔ 𝐴 ∈ ( span ‘ { 𝐵 } ) ) )
3 1 2 syl5ibcom ( 𝐴 ∈ ℋ → ( ( span ‘ { 𝐴 } ) = ( span ‘ { 𝐵 } ) → 𝐴 ∈ ( span ‘ { 𝐵 } ) ) )