Description: Membership relation implied by equality of spans. (Contributed by NM, 6-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | spansneleqi | ⊢ ( 𝐴 ∈ ℋ → ( ( span ‘ { 𝐴 } ) = ( span ‘ { 𝐵 } ) → 𝐴 ∈ ( span ‘ { 𝐵 } ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | spansnid | ⊢ ( 𝐴 ∈ ℋ → 𝐴 ∈ ( span ‘ { 𝐴 } ) ) | |
| 2 | eleq2 | ⊢ ( ( span ‘ { 𝐴 } ) = ( span ‘ { 𝐵 } ) → ( 𝐴 ∈ ( span ‘ { 𝐴 } ) ↔ 𝐴 ∈ ( span ‘ { 𝐵 } ) ) ) | |
| 3 | 1 2 | syl5ibcom | ⊢ ( 𝐴 ∈ ℋ → ( ( span ‘ { 𝐴 } ) = ( span ‘ { 𝐵 } ) → 𝐴 ∈ ( span ‘ { 𝐵 } ) ) ) |