Step |
Hyp |
Ref |
Expression |
1 |
|
spansn.1 |
⊢ 𝐴 ∈ ℋ |
2 |
|
snssi |
⊢ ( 𝐴 ∈ ℋ → { 𝐴 } ⊆ ℋ ) |
3 |
|
spanssoc |
⊢ ( { 𝐴 } ⊆ ℋ → ( span ‘ { 𝐴 } ) ⊆ ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) ) |
4 |
1 2 3
|
mp2b |
⊢ ( span ‘ { 𝐴 } ) ⊆ ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) |
5 |
1
|
elexi |
⊢ 𝐴 ∈ V |
6 |
5
|
snss |
⊢ ( 𝐴 ∈ 𝑦 ↔ { 𝐴 } ⊆ 𝑦 ) |
7 |
|
shmulcl |
⊢ ( ( 𝑦 ∈ Sℋ ∧ 𝑧 ∈ ℂ ∧ 𝐴 ∈ 𝑦 ) → ( 𝑧 ·ℎ 𝐴 ) ∈ 𝑦 ) |
8 |
7
|
3expia |
⊢ ( ( 𝑦 ∈ Sℋ ∧ 𝑧 ∈ ℂ ) → ( 𝐴 ∈ 𝑦 → ( 𝑧 ·ℎ 𝐴 ) ∈ 𝑦 ) ) |
9 |
8
|
ancoms |
⊢ ( ( 𝑧 ∈ ℂ ∧ 𝑦 ∈ Sℋ ) → ( 𝐴 ∈ 𝑦 → ( 𝑧 ·ℎ 𝐴 ) ∈ 𝑦 ) ) |
10 |
6 9
|
syl5bir |
⊢ ( ( 𝑧 ∈ ℂ ∧ 𝑦 ∈ Sℋ ) → ( { 𝐴 } ⊆ 𝑦 → ( 𝑧 ·ℎ 𝐴 ) ∈ 𝑦 ) ) |
11 |
|
eleq1 |
⊢ ( 𝑥 = ( 𝑧 ·ℎ 𝐴 ) → ( 𝑥 ∈ 𝑦 ↔ ( 𝑧 ·ℎ 𝐴 ) ∈ 𝑦 ) ) |
12 |
11
|
imbi2d |
⊢ ( 𝑥 = ( 𝑧 ·ℎ 𝐴 ) → ( ( { 𝐴 } ⊆ 𝑦 → 𝑥 ∈ 𝑦 ) ↔ ( { 𝐴 } ⊆ 𝑦 → ( 𝑧 ·ℎ 𝐴 ) ∈ 𝑦 ) ) ) |
13 |
10 12
|
syl5ibrcom |
⊢ ( ( 𝑧 ∈ ℂ ∧ 𝑦 ∈ Sℋ ) → ( 𝑥 = ( 𝑧 ·ℎ 𝐴 ) → ( { 𝐴 } ⊆ 𝑦 → 𝑥 ∈ 𝑦 ) ) ) |
14 |
13
|
ralrimdva |
⊢ ( 𝑧 ∈ ℂ → ( 𝑥 = ( 𝑧 ·ℎ 𝐴 ) → ∀ 𝑦 ∈ Sℋ ( { 𝐴 } ⊆ 𝑦 → 𝑥 ∈ 𝑦 ) ) ) |
15 |
14
|
rexlimiv |
⊢ ( ∃ 𝑧 ∈ ℂ 𝑥 = ( 𝑧 ·ℎ 𝐴 ) → ∀ 𝑦 ∈ Sℋ ( { 𝐴 } ⊆ 𝑦 → 𝑥 ∈ 𝑦 ) ) |
16 |
1
|
h1de2ci |
⊢ ( 𝑥 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) ↔ ∃ 𝑧 ∈ ℂ 𝑥 = ( 𝑧 ·ℎ 𝐴 ) ) |
17 |
|
vex |
⊢ 𝑥 ∈ V |
18 |
17
|
elspani |
⊢ ( { 𝐴 } ⊆ ℋ → ( 𝑥 ∈ ( span ‘ { 𝐴 } ) ↔ ∀ 𝑦 ∈ Sℋ ( { 𝐴 } ⊆ 𝑦 → 𝑥 ∈ 𝑦 ) ) ) |
19 |
1 2 18
|
mp2b |
⊢ ( 𝑥 ∈ ( span ‘ { 𝐴 } ) ↔ ∀ 𝑦 ∈ Sℋ ( { 𝐴 } ⊆ 𝑦 → 𝑥 ∈ 𝑦 ) ) |
20 |
15 16 19
|
3imtr4i |
⊢ ( 𝑥 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) → 𝑥 ∈ ( span ‘ { 𝐴 } ) ) |
21 |
20
|
ssriv |
⊢ ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) ⊆ ( span ‘ { 𝐴 } ) |
22 |
4 21
|
eqssi |
⊢ ( span ‘ { 𝐴 } ) = ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) |