Description: A vector belongs to the span of its singleton. (Contributed by NM, 3-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | spansnid | ⊢ ( 𝐴 ∈ ℋ → 𝐴 ∈ ( span ‘ { 𝐴 } ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | h1did | ⊢ ( 𝐴 ∈ ℋ → 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) ) | |
| 2 | spansn | ⊢ ( 𝐴 ∈ ℋ → ( span ‘ { 𝐴 } ) = ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) ) | |
| 3 | 1 2 | eleqtrrd | ⊢ ( 𝐴 ∈ ℋ → 𝐴 ∈ ( span ‘ { 𝐴 } ) ) |