Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) → ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) +ℋ ( span ‘ { 𝐵 } ) ) ) |
2 |
|
oveq1 |
⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) → ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ ( span ‘ { 𝐵 } ) ) ) |
3 |
1 2
|
eqeq12d |
⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) → ( ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) = ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) ↔ ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) +ℋ ( span ‘ { 𝐵 } ) ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ ( span ‘ { 𝐵 } ) ) ) ) |
4 |
|
sneq |
⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → { 𝐵 } = { if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) } ) |
5 |
4
|
fveq2d |
⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( span ‘ { 𝐵 } ) = ( span ‘ { if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) } ) ) |
6 |
5
|
oveq2d |
⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) +ℋ ( span ‘ { 𝐵 } ) ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) +ℋ ( span ‘ { if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) } ) ) ) |
7 |
5
|
oveq2d |
⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ ( span ‘ { 𝐵 } ) ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ ( span ‘ { if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) } ) ) ) |
8 |
6 7
|
eqeq12d |
⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) +ℋ ( span ‘ { 𝐵 } ) ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ ( span ‘ { 𝐵 } ) ) ↔ ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) +ℋ ( span ‘ { if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) } ) ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ ( span ‘ { if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) } ) ) ) ) |
9 |
|
ifchhv |
⊢ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∈ Cℋ |
10 |
|
ifhvhv0 |
⊢ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ∈ ℋ |
11 |
9 10
|
spansnji |
⊢ ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) +ℋ ( span ‘ { if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) } ) ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ ( span ‘ { if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) } ) ) |
12 |
3 8 11
|
dedth2h |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) = ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) ) |