Metamath Proof Explorer


Theorem spansnji

Description: The subspace sum of a closed subspace and a one-dimensional subspace equals their join. (Proof suggested by Eric Schechter 1-Jun-2004.) (Contributed by NM, 1-Jun-2004) (New usage is discouraged.)

Ref Expression
Hypotheses spansnj.1 𝐴C
spansnj.2 𝐵 ∈ ℋ
Assertion spansnji ( 𝐴 + ( span ‘ { 𝐵 } ) ) = ( 𝐴 ( span ‘ { 𝐵 } ) )

Proof

Step Hyp Ref Expression
1 spansnj.1 𝐴C
2 spansnj.2 𝐵 ∈ ℋ
3 1 chshii 𝐴S
4 2 spansnchi ( span ‘ { 𝐵 } ) ∈ C
5 4 chshii ( span ‘ { 𝐵 } ) ∈ S
6 3 5 shjshsi ( 𝐴 ( span ‘ { 𝐵 } ) ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 + ( span ‘ { 𝐵 } ) ) ) )
7 1 chssii 𝐴 ⊆ ℋ
8 1 choccli ( ⊥ ‘ 𝐴 ) ∈ C
9 8 2 pjhclii ( ( proj ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ∈ ℋ
10 snssi ( ( ( proj ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ∈ ℋ → { ( ( proj ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ⊆ ℋ )
11 9 10 ax-mp { ( ( proj ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ⊆ ℋ
12 7 11 spanuni ( span ‘ ( 𝐴 ∪ { ( ( proj ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) = ( ( span ‘ 𝐴 ) + ( span ‘ { ( ( proj ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) )
13 spanid ( 𝐴S → ( span ‘ 𝐴 ) = 𝐴 )
14 3 13 ax-mp ( span ‘ 𝐴 ) = 𝐴
15 14 oveq1i ( ( span ‘ 𝐴 ) + ( span ‘ { ( ( proj ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) = ( 𝐴 + ( span ‘ { ( ( proj ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) )
16 7 2 spansnpji 𝐴 ⊆ ( ⊥ ‘ ( span ‘ { ( ( proj ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) )
17 9 spansnchi ( span ‘ { ( ( proj ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ∈ C
18 1 17 osumi ( 𝐴 ⊆ ( ⊥ ‘ ( span ‘ { ( ( proj ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) → ( 𝐴 + ( span ‘ { ( ( proj ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) = ( 𝐴 ( span ‘ { ( ( proj ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) )
19 16 18 ax-mp ( 𝐴 + ( span ‘ { ( ( proj ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) = ( 𝐴 ( span ‘ { ( ( proj ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) )
20 12 15 19 3eqtrri ( 𝐴 ( span ‘ { ( ( proj ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) = ( span ‘ ( 𝐴 ∪ { ( ( proj ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) )
21 1 2 spanunsni ( span ‘ ( 𝐴 ∪ { 𝐵 } ) ) = ( span ‘ ( 𝐴 ∪ { ( ( proj ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) )
22 20 21 eqtr4i ( 𝐴 ( span ‘ { ( ( proj ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) = ( span ‘ ( 𝐴 ∪ { 𝐵 } ) )
23 snssi ( 𝐵 ∈ ℋ → { 𝐵 } ⊆ ℋ )
24 2 23 ax-mp { 𝐵 } ⊆ ℋ
25 7 24 spanuni ( span ‘ ( 𝐴 ∪ { 𝐵 } ) ) = ( ( span ‘ 𝐴 ) + ( span ‘ { 𝐵 } ) )
26 14 oveq1i ( ( span ‘ 𝐴 ) + ( span ‘ { 𝐵 } ) ) = ( 𝐴 + ( span ‘ { 𝐵 } ) )
27 22 25 26 3eqtrri ( 𝐴 + ( span ‘ { 𝐵 } ) ) = ( 𝐴 ( span ‘ { ( ( proj ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) )
28 1 17 chjcli ( 𝐴 ( span ‘ { ( ( proj ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) ∈ C
29 27 28 eqeltri ( 𝐴 + ( span ‘ { 𝐵 } ) ) ∈ C
30 29 ococi ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 + ( span ‘ { 𝐵 } ) ) ) ) = ( 𝐴 + ( span ‘ { 𝐵 } ) )
31 6 30 eqtr2i ( 𝐴 + ( span ‘ { 𝐵 } ) ) = ( 𝐴 ( span ‘ { 𝐵 } ) )