Step |
Hyp |
Ref |
Expression |
1 |
|
spansnj.1 |
⊢ 𝐴 ∈ Cℋ |
2 |
|
spansnj.2 |
⊢ 𝐵 ∈ ℋ |
3 |
1
|
chshii |
⊢ 𝐴 ∈ Sℋ |
4 |
2
|
spansnchi |
⊢ ( span ‘ { 𝐵 } ) ∈ Cℋ |
5 |
4
|
chshii |
⊢ ( span ‘ { 𝐵 } ) ∈ Sℋ |
6 |
3 5
|
shjshsi |
⊢ ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) ) ) |
7 |
1
|
chssii |
⊢ 𝐴 ⊆ ℋ |
8 |
1
|
choccli |
⊢ ( ⊥ ‘ 𝐴 ) ∈ Cℋ |
9 |
8 2
|
pjhclii |
⊢ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ∈ ℋ |
10 |
|
snssi |
⊢ ( ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ∈ ℋ → { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ⊆ ℋ ) |
11 |
9 10
|
ax-mp |
⊢ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ⊆ ℋ |
12 |
7 11
|
spanuni |
⊢ ( span ‘ ( 𝐴 ∪ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) = ( ( span ‘ 𝐴 ) +ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) |
13 |
|
spanid |
⊢ ( 𝐴 ∈ Sℋ → ( span ‘ 𝐴 ) = 𝐴 ) |
14 |
3 13
|
ax-mp |
⊢ ( span ‘ 𝐴 ) = 𝐴 |
15 |
14
|
oveq1i |
⊢ ( ( span ‘ 𝐴 ) +ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) = ( 𝐴 +ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) |
16 |
7 2
|
spansnpji |
⊢ 𝐴 ⊆ ( ⊥ ‘ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) |
17 |
9
|
spansnchi |
⊢ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ∈ Cℋ |
18 |
1 17
|
osumi |
⊢ ( 𝐴 ⊆ ( ⊥ ‘ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) → ( 𝐴 +ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) = ( 𝐴 ∨ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) ) |
19 |
16 18
|
ax-mp |
⊢ ( 𝐴 +ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) = ( 𝐴 ∨ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) |
20 |
12 15 19
|
3eqtrri |
⊢ ( 𝐴 ∨ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) = ( span ‘ ( 𝐴 ∪ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) |
21 |
1 2
|
spanunsni |
⊢ ( span ‘ ( 𝐴 ∪ { 𝐵 } ) ) = ( span ‘ ( 𝐴 ∪ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) |
22 |
20 21
|
eqtr4i |
⊢ ( 𝐴 ∨ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) = ( span ‘ ( 𝐴 ∪ { 𝐵 } ) ) |
23 |
|
snssi |
⊢ ( 𝐵 ∈ ℋ → { 𝐵 } ⊆ ℋ ) |
24 |
2 23
|
ax-mp |
⊢ { 𝐵 } ⊆ ℋ |
25 |
7 24
|
spanuni |
⊢ ( span ‘ ( 𝐴 ∪ { 𝐵 } ) ) = ( ( span ‘ 𝐴 ) +ℋ ( span ‘ { 𝐵 } ) ) |
26 |
14
|
oveq1i |
⊢ ( ( span ‘ 𝐴 ) +ℋ ( span ‘ { 𝐵 } ) ) = ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) |
27 |
22 25 26
|
3eqtrri |
⊢ ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) = ( 𝐴 ∨ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) |
28 |
1 17
|
chjcli |
⊢ ( 𝐴 ∨ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) ∈ Cℋ |
29 |
27 28
|
eqeltri |
⊢ ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) ∈ Cℋ |
30 |
29
|
ococi |
⊢ ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) ) ) = ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) |
31 |
6 30
|
eqtr2i |
⊢ ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) = ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) |