| Step |
Hyp |
Ref |
Expression |
| 1 |
|
spansnm0.1 |
⊢ 𝐴 ∈ ℋ |
| 2 |
|
spansnm0.2 |
⊢ 𝐵 ∈ ℋ |
| 3 |
2
|
spansnchi |
⊢ ( span ‘ { 𝐵 } ) ∈ Cℋ |
| 4 |
3
|
chshii |
⊢ ( span ‘ { 𝐵 } ) ∈ Sℋ |
| 5 |
|
elspansn5 |
⊢ ( ( span ‘ { 𝐵 } ) ∈ Sℋ → ( ( ( 𝐴 ∈ ℋ ∧ ¬ 𝐴 ∈ ( span ‘ { 𝐵 } ) ) ∧ ( 𝑥 ∈ ( span ‘ { 𝐴 } ) ∧ 𝑥 ∈ ( span ‘ { 𝐵 } ) ) ) → 𝑥 = 0ℎ ) ) |
| 6 |
4 5
|
ax-mp |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ ¬ 𝐴 ∈ ( span ‘ { 𝐵 } ) ) ∧ ( 𝑥 ∈ ( span ‘ { 𝐴 } ) ∧ 𝑥 ∈ ( span ‘ { 𝐵 } ) ) ) → 𝑥 = 0ℎ ) |
| 7 |
1 6
|
mpanl1 |
⊢ ( ( ¬ 𝐴 ∈ ( span ‘ { 𝐵 } ) ∧ ( 𝑥 ∈ ( span ‘ { 𝐴 } ) ∧ 𝑥 ∈ ( span ‘ { 𝐵 } ) ) ) → 𝑥 = 0ℎ ) |
| 8 |
7
|
ex |
⊢ ( ¬ 𝐴 ∈ ( span ‘ { 𝐵 } ) → ( ( 𝑥 ∈ ( span ‘ { 𝐴 } ) ∧ 𝑥 ∈ ( span ‘ { 𝐵 } ) ) → 𝑥 = 0ℎ ) ) |
| 9 |
|
elin |
⊢ ( 𝑥 ∈ ( ( span ‘ { 𝐴 } ) ∩ ( span ‘ { 𝐵 } ) ) ↔ ( 𝑥 ∈ ( span ‘ { 𝐴 } ) ∧ 𝑥 ∈ ( span ‘ { 𝐵 } ) ) ) |
| 10 |
|
elch0 |
⊢ ( 𝑥 ∈ 0ℋ ↔ 𝑥 = 0ℎ ) |
| 11 |
8 9 10
|
3imtr4g |
⊢ ( ¬ 𝐴 ∈ ( span ‘ { 𝐵 } ) → ( 𝑥 ∈ ( ( span ‘ { 𝐴 } ) ∩ ( span ‘ { 𝐵 } ) ) → 𝑥 ∈ 0ℋ ) ) |
| 12 |
11
|
ssrdv |
⊢ ( ¬ 𝐴 ∈ ( span ‘ { 𝐵 } ) → ( ( span ‘ { 𝐴 } ) ∩ ( span ‘ { 𝐵 } ) ) ⊆ 0ℋ ) |
| 13 |
1
|
spansnchi |
⊢ ( span ‘ { 𝐴 } ) ∈ Cℋ |
| 14 |
13 3
|
chincli |
⊢ ( ( span ‘ { 𝐴 } ) ∩ ( span ‘ { 𝐵 } ) ) ∈ Cℋ |
| 15 |
14
|
chle0i |
⊢ ( ( ( span ‘ { 𝐴 } ) ∩ ( span ‘ { 𝐵 } ) ) ⊆ 0ℋ ↔ ( ( span ‘ { 𝐴 } ) ∩ ( span ‘ { 𝐵 } ) ) = 0ℋ ) |
| 16 |
12 15
|
sylib |
⊢ ( ¬ 𝐴 ∈ ( span ‘ { 𝐵 } ) → ( ( span ‘ { 𝐴 } ) ∩ ( span ‘ { 𝐵 } ) ) = 0ℋ ) |