| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							spansnsh | 
							⊢ ( 𝐴  ∈   ℋ  →  ( span ‘ { 𝐴 } )  ∈   Sℋ  )  | 
						
						
							| 2 | 
							
								
							 | 
							spansnid | 
							⊢ ( 𝐴  ∈   ℋ  →  𝐴  ∈  ( span ‘ { 𝐴 } ) )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							jca | 
							⊢ ( 𝐴  ∈   ℋ  →  ( ( span ‘ { 𝐴 } )  ∈   Sℋ   ∧  𝐴  ∈  ( span ‘ { 𝐴 } ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							shmulcl | 
							⊢ ( ( ( span ‘ { 𝐴 } )  ∈   Sℋ   ∧  𝐵  ∈  ℂ  ∧  𝐴  ∈  ( span ‘ { 𝐴 } ) )  →  ( 𝐵  ·ℎ  𝐴 )  ∈  ( span ‘ { 𝐴 } ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							3com12 | 
							⊢ ( ( 𝐵  ∈  ℂ  ∧  ( span ‘ { 𝐴 } )  ∈   Sℋ   ∧  𝐴  ∈  ( span ‘ { 𝐴 } ) )  →  ( 𝐵  ·ℎ  𝐴 )  ∈  ( span ‘ { 𝐴 } ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							3expb | 
							⊢ ( ( 𝐵  ∈  ℂ  ∧  ( ( span ‘ { 𝐴 } )  ∈   Sℋ   ∧  𝐴  ∈  ( span ‘ { 𝐴 } ) ) )  →  ( 𝐵  ·ℎ  𝐴 )  ∈  ( span ‘ { 𝐴 } ) )  | 
						
						
							| 7 | 
							
								3 6
							 | 
							sylan2 | 
							⊢ ( ( 𝐵  ∈  ℂ  ∧  𝐴  ∈   ℋ )  →  ( 𝐵  ·ℎ  𝐴 )  ∈  ( span ‘ { 𝐴 } ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							ancoms | 
							⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈  ℂ )  →  ( 𝐵  ·ℎ  𝐴 )  ∈  ( span ‘ { 𝐴 } ) )  |