| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							spansnpj.1 | 
							⊢ 𝐴  ⊆   ℋ  | 
						
						
							| 2 | 
							
								
							 | 
							spansnpj.2 | 
							⊢ 𝐵  ∈   ℋ  | 
						
						
							| 3 | 
							
								
							 | 
							ococss | 
							⊢ ( 𝐴  ⊆   ℋ  →  𝐴  ⊆  ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) )  | 
						
						
							| 4 | 
							
								1 3
							 | 
							ax-mp | 
							⊢ 𝐴  ⊆  ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							occl | 
							⊢ ( 𝐴  ⊆   ℋ  →  ( ⊥ ‘ 𝐴 )  ∈   Cℋ  )  | 
						
						
							| 6 | 
							
								1 5
							 | 
							ax-mp | 
							⊢ ( ⊥ ‘ 𝐴 )  ∈   Cℋ   | 
						
						
							| 7 | 
							
								6
							 | 
							chssii | 
							⊢ ( ⊥ ‘ 𝐴 )  ⊆   ℋ  | 
						
						
							| 8 | 
							
								6 2
							 | 
							pjclii | 
							⊢ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 )  ∈  ( ⊥ ‘ 𝐴 )  | 
						
						
							| 9 | 
							
								
							 | 
							snssi | 
							⊢ ( ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 )  ∈  ( ⊥ ‘ 𝐴 )  →  { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) }  ⊆  ( ⊥ ‘ 𝐴 ) )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							ax-mp | 
							⊢ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) }  ⊆  ( ⊥ ‘ 𝐴 )  | 
						
						
							| 11 | 
							
								
							 | 
							spanss | 
							⊢ ( ( ( ⊥ ‘ 𝐴 )  ⊆   ℋ  ∧  { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) }  ⊆  ( ⊥ ‘ 𝐴 ) )  →  ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } )  ⊆  ( span ‘ ( ⊥ ‘ 𝐴 ) ) )  | 
						
						
							| 12 | 
							
								7 10 11
							 | 
							mp2an | 
							⊢ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } )  ⊆  ( span ‘ ( ⊥ ‘ 𝐴 ) )  | 
						
						
							| 13 | 
							
								6
							 | 
							chshii | 
							⊢ ( ⊥ ‘ 𝐴 )  ∈   Sℋ   | 
						
						
							| 14 | 
							
								
							 | 
							spanid | 
							⊢ ( ( ⊥ ‘ 𝐴 )  ∈   Sℋ   →  ( span ‘ ( ⊥ ‘ 𝐴 ) )  =  ( ⊥ ‘ 𝐴 ) )  | 
						
						
							| 15 | 
							
								13 14
							 | 
							ax-mp | 
							⊢ ( span ‘ ( ⊥ ‘ 𝐴 ) )  =  ( ⊥ ‘ 𝐴 )  | 
						
						
							| 16 | 
							
								12 15
							 | 
							sseqtri | 
							⊢ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } )  ⊆  ( ⊥ ‘ 𝐴 )  | 
						
						
							| 17 | 
							
								6 2
							 | 
							pjhclii | 
							⊢ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 )  ∈   ℋ  | 
						
						
							| 18 | 
							
								17
							 | 
							spansnchi | 
							⊢ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } )  ∈   Cℋ   | 
						
						
							| 19 | 
							
								18 6
							 | 
							chsscon3i | 
							⊢ ( ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } )  ⊆  ( ⊥ ‘ 𝐴 )  ↔  ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) )  ⊆  ( ⊥ ‘ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) )  | 
						
						
							| 20 | 
							
								16 19
							 | 
							mpbi | 
							⊢ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) )  ⊆  ( ⊥ ‘ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) )  | 
						
						
							| 21 | 
							
								4 20
							 | 
							sstri | 
							⊢ 𝐴  ⊆  ( ⊥ ‘ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) )  |