Description: The subspace sum of a closed subspace and a one-dimensional subspace is closed. (Contributed by NM, 17-Dec-2004) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | spansnscl | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) ∈ Cℋ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spansnj | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) = ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) ) | |
2 | spansnch | ⊢ ( 𝐵 ∈ ℋ → ( span ‘ { 𝐵 } ) ∈ Cℋ ) | |
3 | chjcl | ⊢ ( ( 𝐴 ∈ Cℋ ∧ ( span ‘ { 𝐵 } ) ∈ Cℋ ) → ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) ∈ Cℋ ) | |
4 | 2 3 | sylan2 | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ∨ℋ ( span ‘ { 𝐵 } ) ) ∈ Cℋ ) |
5 | 1 4 | eqeltrd | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) ∈ Cℋ ) |