Metamath Proof Explorer


Theorem spansnscl

Description: The subspace sum of a closed subspace and a one-dimensional subspace is closed. (Contributed by NM, 17-Dec-2004) (New usage is discouraged.)

Ref Expression
Assertion spansnscl ( ( 𝐴C𝐵 ∈ ℋ ) → ( 𝐴 + ( span ‘ { 𝐵 } ) ) ∈ C )

Proof

Step Hyp Ref Expression
1 spansnj ( ( 𝐴C𝐵 ∈ ℋ ) → ( 𝐴 + ( span ‘ { 𝐵 } ) ) = ( 𝐴 ( span ‘ { 𝐵 } ) ) )
2 spansnch ( 𝐵 ∈ ℋ → ( span ‘ { 𝐵 } ) ∈ C )
3 chjcl ( ( 𝐴C ∧ ( span ‘ { 𝐵 } ) ∈ C ) → ( 𝐴 ( span ‘ { 𝐵 } ) ) ∈ C )
4 2 3 sylan2 ( ( 𝐴C𝐵 ∈ ℋ ) → ( 𝐴 ( span ‘ { 𝐵 } ) ) ∈ C )
5 1 4 eqeltrd ( ( 𝐴C𝐵 ∈ ℋ ) → ( 𝐴 + ( span ‘ { 𝐵 } ) ) ∈ C )