Description: The span of a Hilbert space singleton is a subspace. (Contributed by NM, 17-Dec-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | spansnsh | ⊢ ( 𝐴 ∈ ℋ → ( span ‘ { 𝐴 } ) ∈ Sℋ ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | spansnch | ⊢ ( 𝐴 ∈ ℋ → ( span ‘ { 𝐴 } ) ∈ Cℋ ) | |
| 2 | chsh | ⊢ ( ( span ‘ { 𝐴 } ) ∈ Cℋ → ( span ‘ { 𝐴 } ) ∈ Sℋ ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐴 ∈ ℋ → ( span ‘ { 𝐴 } ) ∈ Sℋ ) |