Description: The span of a Hilbert space singleton is a subspace. (Contributed by NM, 17-Dec-2004) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | spansnsh | ⊢ ( 𝐴 ∈ ℋ → ( span ‘ { 𝐴 } ) ∈ Sℋ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spansnch | ⊢ ( 𝐴 ∈ ℋ → ( span ‘ { 𝐴 } ) ∈ Cℋ ) | |
2 | chsh | ⊢ ( ( span ‘ { 𝐴 } ) ∈ Cℋ → ( span ‘ { 𝐴 } ) ∈ Sℋ ) | |
3 | 1 2 | syl | ⊢ ( 𝐴 ∈ ℋ → ( span ‘ { 𝐴 } ) ∈ Sℋ ) |