Metamath Proof Explorer


Theorem spansnsh

Description: The span of a Hilbert space singleton is a subspace. (Contributed by NM, 17-Dec-2004) (New usage is discouraged.)

Ref Expression
Assertion spansnsh ( 𝐴 ∈ ℋ → ( span ‘ { 𝐴 } ) ∈ S )

Proof

Step Hyp Ref Expression
1 spansnch ( 𝐴 ∈ ℋ → ( span ‘ { 𝐴 } ) ∈ C )
2 chsh ( ( span ‘ { 𝐴 } ) ∈ C → ( span ‘ { 𝐴 } ) ∈ S )
3 1 2 syl ( 𝐴 ∈ ℋ → ( span ‘ { 𝐴 } ) ∈ S )