| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							shel | 
							⊢ ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈  𝐴 )  →  𝐵  ∈   ℋ )  | 
						
						
							| 2 | 
							
								
							 | 
							elspansn | 
							⊢ ( 𝐵  ∈   ℋ  →  ( 𝑥  ∈  ( span ‘ { 𝐵 } )  ↔  ∃ 𝑦  ∈  ℂ 𝑥  =  ( 𝑦  ·ℎ  𝐵 ) ) )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							syl | 
							⊢ ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈  𝐴 )  →  ( 𝑥  ∈  ( span ‘ { 𝐵 } )  ↔  ∃ 𝑦  ∈  ℂ 𝑥  =  ( 𝑦  ·ℎ  𝐵 ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							shmulcl | 
							⊢ ( ( 𝐴  ∈   Sℋ   ∧  𝑦  ∈  ℂ  ∧  𝐵  ∈  𝐴 )  →  ( 𝑦  ·ℎ  𝐵 )  ∈  𝐴 )  | 
						
						
							| 5 | 
							
								
							 | 
							eleq1a | 
							⊢ ( ( 𝑦  ·ℎ  𝐵 )  ∈  𝐴  →  ( 𝑥  =  ( 𝑦  ·ℎ  𝐵 )  →  𝑥  ∈  𝐴 ) )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							syl | 
							⊢ ( ( 𝐴  ∈   Sℋ   ∧  𝑦  ∈  ℂ  ∧  𝐵  ∈  𝐴 )  →  ( 𝑥  =  ( 𝑦  ·ℎ  𝐵 )  →  𝑥  ∈  𝐴 ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							3exp | 
							⊢ ( 𝐴  ∈   Sℋ   →  ( 𝑦  ∈  ℂ  →  ( 𝐵  ∈  𝐴  →  ( 𝑥  =  ( 𝑦  ·ℎ  𝐵 )  →  𝑥  ∈  𝐴 ) ) ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							com23 | 
							⊢ ( 𝐴  ∈   Sℋ   →  ( 𝐵  ∈  𝐴  →  ( 𝑦  ∈  ℂ  →  ( 𝑥  =  ( 𝑦  ·ℎ  𝐵 )  →  𝑥  ∈  𝐴 ) ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							imp | 
							⊢ ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈  𝐴 )  →  ( 𝑦  ∈  ℂ  →  ( 𝑥  =  ( 𝑦  ·ℎ  𝐵 )  →  𝑥  ∈  𝐴 ) ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							rexlimdv | 
							⊢ ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈  𝐴 )  →  ( ∃ 𝑦  ∈  ℂ 𝑥  =  ( 𝑦  ·ℎ  𝐵 )  →  𝑥  ∈  𝐴 ) )  | 
						
						
							| 11 | 
							
								3 10
							 | 
							sylbid | 
							⊢ ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈  𝐴 )  →  ( 𝑥  ∈  ( span ‘ { 𝐵 } )  →  𝑥  ∈  𝐴 ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							ssrdv | 
							⊢ ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈  𝐴 )  →  ( span ‘ { 𝐵 } )  ⊆  𝐴 )  |