Metamath Proof Explorer


Theorem spansnss2

Description: The span of the singleton of an element of a subspace is included in the subspace. (Contributed by NM, 16-Dec-2004) (New usage is discouraged.)

Ref Expression
Assertion spansnss2 ( ( 𝐴S𝐵 ∈ ℋ ) → ( 𝐵𝐴 ↔ ( span ‘ { 𝐵 } ) ⊆ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 spansnss ( ( 𝐴S𝐵𝐴 ) → ( span ‘ { 𝐵 } ) ⊆ 𝐴 )
2 1 ex ( 𝐴S → ( 𝐵𝐴 → ( span ‘ { 𝐵 } ) ⊆ 𝐴 ) )
3 2 adantr ( ( 𝐴S𝐵 ∈ ℋ ) → ( 𝐵𝐴 → ( span ‘ { 𝐵 } ) ⊆ 𝐴 ) )
4 spansnid ( 𝐵 ∈ ℋ → 𝐵 ∈ ( span ‘ { 𝐵 } ) )
5 ssel ( ( span ‘ { 𝐵 } ) ⊆ 𝐴 → ( 𝐵 ∈ ( span ‘ { 𝐵 } ) → 𝐵𝐴 ) )
6 4 5 syl5com ( 𝐵 ∈ ℋ → ( ( span ‘ { 𝐵 } ) ⊆ 𝐴𝐵𝐴 ) )
7 6 adantl ( ( 𝐴S𝐵 ∈ ℋ ) → ( ( span ‘ { 𝐵 } ) ⊆ 𝐴𝐵𝐴 ) )
8 3 7 impbid ( ( 𝐴S𝐵 ∈ ℋ ) → ( 𝐵𝐴 ↔ ( span ‘ { 𝐵 } ) ⊆ 𝐴 ) )