Step |
Hyp |
Ref |
Expression |
1 |
|
spansnss |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ 𝐴 ) → ( span ‘ { 𝐵 } ) ⊆ 𝐴 ) |
2 |
1
|
ex |
⊢ ( 𝐴 ∈ Sℋ → ( 𝐵 ∈ 𝐴 → ( span ‘ { 𝐵 } ) ⊆ 𝐴 ) ) |
3 |
2
|
adantr |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐵 ∈ 𝐴 → ( span ‘ { 𝐵 } ) ⊆ 𝐴 ) ) |
4 |
|
spansnid |
⊢ ( 𝐵 ∈ ℋ → 𝐵 ∈ ( span ‘ { 𝐵 } ) ) |
5 |
|
ssel |
⊢ ( ( span ‘ { 𝐵 } ) ⊆ 𝐴 → ( 𝐵 ∈ ( span ‘ { 𝐵 } ) → 𝐵 ∈ 𝐴 ) ) |
6 |
4 5
|
syl5com |
⊢ ( 𝐵 ∈ ℋ → ( ( span ‘ { 𝐵 } ) ⊆ 𝐴 → 𝐵 ∈ 𝐴 ) ) |
7 |
6
|
adantl |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ ℋ ) → ( ( span ‘ { 𝐵 } ) ⊆ 𝐴 → 𝐵 ∈ 𝐴 ) ) |
8 |
3 7
|
impbid |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐵 ∈ 𝐴 ↔ ( span ‘ { 𝐵 } ) ⊆ 𝐴 ) ) |