| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							sstr2 | 
							⊢ ( 𝐴  ⊆  𝐵  →  ( 𝐵  ⊆  𝑥  →  𝐴  ⊆  𝑥 ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							adantr | 
							⊢ ( ( 𝐴  ⊆  𝐵  ∧  𝑥  ∈   Sℋ  )  →  ( 𝐵  ⊆  𝑥  →  𝐴  ⊆  𝑥 ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							ss2rabdv | 
							⊢ ( 𝐴  ⊆  𝐵  →  { 𝑥  ∈   Sℋ   ∣  𝐵  ⊆  𝑥 }  ⊆  { 𝑥  ∈   Sℋ   ∣  𝐴  ⊆  𝑥 } )  | 
						
						
							| 4 | 
							
								
							 | 
							intss | 
							⊢ ( { 𝑥  ∈   Sℋ   ∣  𝐵  ⊆  𝑥 }  ⊆  { 𝑥  ∈   Sℋ   ∣  𝐴  ⊆  𝑥 }  →  ∩  { 𝑥  ∈   Sℋ   ∣  𝐴  ⊆  𝑥 }  ⊆  ∩  { 𝑥  ∈   Sℋ   ∣  𝐵  ⊆  𝑥 } )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							syl | 
							⊢ ( 𝐴  ⊆  𝐵  →  ∩  { 𝑥  ∈   Sℋ   ∣  𝐴  ⊆  𝑥 }  ⊆  ∩  { 𝑥  ∈   Sℋ   ∣  𝐵  ⊆  𝑥 } )  | 
						
						
							| 6 | 
							
								5
							 | 
							adantl | 
							⊢ ( ( 𝐵  ⊆   ℋ  ∧  𝐴  ⊆  𝐵 )  →  ∩  { 𝑥  ∈   Sℋ   ∣  𝐴  ⊆  𝑥 }  ⊆  ∩  { 𝑥  ∈   Sℋ   ∣  𝐵  ⊆  𝑥 } )  | 
						
						
							| 7 | 
							
								
							 | 
							sstr | 
							⊢ ( ( 𝐴  ⊆  𝐵  ∧  𝐵  ⊆   ℋ )  →  𝐴  ⊆   ℋ )  | 
						
						
							| 8 | 
							
								7
							 | 
							ancoms | 
							⊢ ( ( 𝐵  ⊆   ℋ  ∧  𝐴  ⊆  𝐵 )  →  𝐴  ⊆   ℋ )  | 
						
						
							| 9 | 
							
								
							 | 
							spanval | 
							⊢ ( 𝐴  ⊆   ℋ  →  ( span ‘ 𝐴 )  =  ∩  { 𝑥  ∈   Sℋ   ∣  𝐴  ⊆  𝑥 } )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							syl | 
							⊢ ( ( 𝐵  ⊆   ℋ  ∧  𝐴  ⊆  𝐵 )  →  ( span ‘ 𝐴 )  =  ∩  { 𝑥  ∈   Sℋ   ∣  𝐴  ⊆  𝑥 } )  | 
						
						
							| 11 | 
							
								
							 | 
							spanval | 
							⊢ ( 𝐵  ⊆   ℋ  →  ( span ‘ 𝐵 )  =  ∩  { 𝑥  ∈   Sℋ   ∣  𝐵  ⊆  𝑥 } )  | 
						
						
							| 12 | 
							
								11
							 | 
							adantr | 
							⊢ ( ( 𝐵  ⊆   ℋ  ∧  𝐴  ⊆  𝐵 )  →  ( span ‘ 𝐵 )  =  ∩  { 𝑥  ∈   Sℋ   ∣  𝐵  ⊆  𝑥 } )  | 
						
						
							| 13 | 
							
								6 10 12
							 | 
							3sstr4d | 
							⊢ ( ( 𝐵  ⊆   ℋ  ∧  𝐴  ⊆  𝐵 )  →  ( span ‘ 𝐴 )  ⊆  ( span ‘ 𝐵 ) )  |