Step |
Hyp |
Ref |
Expression |
1 |
|
ocss |
⊢ ( 𝐴 ⊆ ℋ → ( ⊥ ‘ 𝐴 ) ⊆ ℋ ) |
2 |
|
ocss |
⊢ ( ( ⊥ ‘ 𝐴 ) ⊆ ℋ → ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ⊆ ℋ ) |
3 |
1 2
|
syl |
⊢ ( 𝐴 ⊆ ℋ → ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ⊆ ℋ ) |
4 |
|
ococss |
⊢ ( 𝐴 ⊆ ℋ → 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) |
5 |
|
spanss |
⊢ ( ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ⊆ ℋ ∧ 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) → ( span ‘ 𝐴 ) ⊆ ( span ‘ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) ) |
6 |
3 4 5
|
syl2anc |
⊢ ( 𝐴 ⊆ ℋ → ( span ‘ 𝐴 ) ⊆ ( span ‘ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) ) |
7 |
|
ocsh |
⊢ ( ( ⊥ ‘ 𝐴 ) ⊆ ℋ → ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∈ Sℋ ) |
8 |
|
spanid |
⊢ ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∈ Sℋ → ( span ‘ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) = ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) |
9 |
1 7 8
|
3syl |
⊢ ( 𝐴 ⊆ ℋ → ( span ‘ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) = ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) |
10 |
6 9
|
sseqtrd |
⊢ ( 𝐴 ⊆ ℋ → ( span ‘ 𝐴 ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) |