| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ocss | 
							⊢ ( 𝐴  ⊆   ℋ  →  ( ⊥ ‘ 𝐴 )  ⊆   ℋ )  | 
						
						
							| 2 | 
							
								
							 | 
							ocss | 
							⊢ ( ( ⊥ ‘ 𝐴 )  ⊆   ℋ  →  ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) )  ⊆   ℋ )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							syl | 
							⊢ ( 𝐴  ⊆   ℋ  →  ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) )  ⊆   ℋ )  | 
						
						
							| 4 | 
							
								
							 | 
							ococss | 
							⊢ ( 𝐴  ⊆   ℋ  →  𝐴  ⊆  ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							spanss | 
							⊢ ( ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) )  ⊆   ℋ  ∧  𝐴  ⊆  ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) )  →  ( span ‘ 𝐴 )  ⊆  ( span ‘ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) )  | 
						
						
							| 6 | 
							
								3 4 5
							 | 
							syl2anc | 
							⊢ ( 𝐴  ⊆   ℋ  →  ( span ‘ 𝐴 )  ⊆  ( span ‘ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							ocsh | 
							⊢ ( ( ⊥ ‘ 𝐴 )  ⊆   ℋ  →  ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) )  ∈   Sℋ  )  | 
						
						
							| 8 | 
							
								
							 | 
							spanid | 
							⊢ ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) )  ∈   Sℋ   →  ( span ‘ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) )  =  ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) )  | 
						
						
							| 9 | 
							
								1 7 8
							 | 
							3syl | 
							⊢ ( 𝐴  ⊆   ℋ  →  ( span ‘ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) )  =  ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) )  | 
						
						
							| 10 | 
							
								6 9
							 | 
							sseqtrd | 
							⊢ ( 𝐴  ⊆   ℋ  →  ( span ‘ 𝐴 )  ⊆  ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) )  |