Step |
Hyp |
Ref |
Expression |
1 |
|
uneq1 |
⊢ ( 𝐴 = if ( 𝐴 ⊆ ℋ , 𝐴 , ℋ ) → ( 𝐴 ∪ 𝐵 ) = ( if ( 𝐴 ⊆ ℋ , 𝐴 , ℋ ) ∪ 𝐵 ) ) |
2 |
1
|
fveq2d |
⊢ ( 𝐴 = if ( 𝐴 ⊆ ℋ , 𝐴 , ℋ ) → ( span ‘ ( 𝐴 ∪ 𝐵 ) ) = ( span ‘ ( if ( 𝐴 ⊆ ℋ , 𝐴 , ℋ ) ∪ 𝐵 ) ) ) |
3 |
|
fveq2 |
⊢ ( 𝐴 = if ( 𝐴 ⊆ ℋ , 𝐴 , ℋ ) → ( span ‘ 𝐴 ) = ( span ‘ if ( 𝐴 ⊆ ℋ , 𝐴 , ℋ ) ) ) |
4 |
3
|
oveq1d |
⊢ ( 𝐴 = if ( 𝐴 ⊆ ℋ , 𝐴 , ℋ ) → ( ( span ‘ 𝐴 ) +ℋ ( span ‘ 𝐵 ) ) = ( ( span ‘ if ( 𝐴 ⊆ ℋ , 𝐴 , ℋ ) ) +ℋ ( span ‘ 𝐵 ) ) ) |
5 |
2 4
|
eqeq12d |
⊢ ( 𝐴 = if ( 𝐴 ⊆ ℋ , 𝐴 , ℋ ) → ( ( span ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( span ‘ 𝐴 ) +ℋ ( span ‘ 𝐵 ) ) ↔ ( span ‘ ( if ( 𝐴 ⊆ ℋ , 𝐴 , ℋ ) ∪ 𝐵 ) ) = ( ( span ‘ if ( 𝐴 ⊆ ℋ , 𝐴 , ℋ ) ) +ℋ ( span ‘ 𝐵 ) ) ) ) |
6 |
|
uneq2 |
⊢ ( 𝐵 = if ( 𝐵 ⊆ ℋ , 𝐵 , ℋ ) → ( if ( 𝐴 ⊆ ℋ , 𝐴 , ℋ ) ∪ 𝐵 ) = ( if ( 𝐴 ⊆ ℋ , 𝐴 , ℋ ) ∪ if ( 𝐵 ⊆ ℋ , 𝐵 , ℋ ) ) ) |
7 |
6
|
fveq2d |
⊢ ( 𝐵 = if ( 𝐵 ⊆ ℋ , 𝐵 , ℋ ) → ( span ‘ ( if ( 𝐴 ⊆ ℋ , 𝐴 , ℋ ) ∪ 𝐵 ) ) = ( span ‘ ( if ( 𝐴 ⊆ ℋ , 𝐴 , ℋ ) ∪ if ( 𝐵 ⊆ ℋ , 𝐵 , ℋ ) ) ) ) |
8 |
|
fveq2 |
⊢ ( 𝐵 = if ( 𝐵 ⊆ ℋ , 𝐵 , ℋ ) → ( span ‘ 𝐵 ) = ( span ‘ if ( 𝐵 ⊆ ℋ , 𝐵 , ℋ ) ) ) |
9 |
8
|
oveq2d |
⊢ ( 𝐵 = if ( 𝐵 ⊆ ℋ , 𝐵 , ℋ ) → ( ( span ‘ if ( 𝐴 ⊆ ℋ , 𝐴 , ℋ ) ) +ℋ ( span ‘ 𝐵 ) ) = ( ( span ‘ if ( 𝐴 ⊆ ℋ , 𝐴 , ℋ ) ) +ℋ ( span ‘ if ( 𝐵 ⊆ ℋ , 𝐵 , ℋ ) ) ) ) |
10 |
7 9
|
eqeq12d |
⊢ ( 𝐵 = if ( 𝐵 ⊆ ℋ , 𝐵 , ℋ ) → ( ( span ‘ ( if ( 𝐴 ⊆ ℋ , 𝐴 , ℋ ) ∪ 𝐵 ) ) = ( ( span ‘ if ( 𝐴 ⊆ ℋ , 𝐴 , ℋ ) ) +ℋ ( span ‘ 𝐵 ) ) ↔ ( span ‘ ( if ( 𝐴 ⊆ ℋ , 𝐴 , ℋ ) ∪ if ( 𝐵 ⊆ ℋ , 𝐵 , ℋ ) ) ) = ( ( span ‘ if ( 𝐴 ⊆ ℋ , 𝐴 , ℋ ) ) +ℋ ( span ‘ if ( 𝐵 ⊆ ℋ , 𝐵 , ℋ ) ) ) ) ) |
11 |
|
sseq1 |
⊢ ( 𝐴 = if ( 𝐴 ⊆ ℋ , 𝐴 , ℋ ) → ( 𝐴 ⊆ ℋ ↔ if ( 𝐴 ⊆ ℋ , 𝐴 , ℋ ) ⊆ ℋ ) ) |
12 |
|
sseq1 |
⊢ ( ℋ = if ( 𝐴 ⊆ ℋ , 𝐴 , ℋ ) → ( ℋ ⊆ ℋ ↔ if ( 𝐴 ⊆ ℋ , 𝐴 , ℋ ) ⊆ ℋ ) ) |
13 |
|
ssid |
⊢ ℋ ⊆ ℋ |
14 |
11 12 13
|
elimhyp |
⊢ if ( 𝐴 ⊆ ℋ , 𝐴 , ℋ ) ⊆ ℋ |
15 |
|
sseq1 |
⊢ ( 𝐵 = if ( 𝐵 ⊆ ℋ , 𝐵 , ℋ ) → ( 𝐵 ⊆ ℋ ↔ if ( 𝐵 ⊆ ℋ , 𝐵 , ℋ ) ⊆ ℋ ) ) |
16 |
|
sseq1 |
⊢ ( ℋ = if ( 𝐵 ⊆ ℋ , 𝐵 , ℋ ) → ( ℋ ⊆ ℋ ↔ if ( 𝐵 ⊆ ℋ , 𝐵 , ℋ ) ⊆ ℋ ) ) |
17 |
15 16 13
|
elimhyp |
⊢ if ( 𝐵 ⊆ ℋ , 𝐵 , ℋ ) ⊆ ℋ |
18 |
14 17
|
spanuni |
⊢ ( span ‘ ( if ( 𝐴 ⊆ ℋ , 𝐴 , ℋ ) ∪ if ( 𝐵 ⊆ ℋ , 𝐵 , ℋ ) ) ) = ( ( span ‘ if ( 𝐴 ⊆ ℋ , 𝐴 , ℋ ) ) +ℋ ( span ‘ if ( 𝐵 ⊆ ℋ , 𝐵 , ℋ ) ) ) |
19 |
5 10 18
|
dedth2h |
⊢ ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) → ( span ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( span ‘ 𝐴 ) +ℋ ( span ‘ 𝐵 ) ) ) |