| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							spanun.1 | 
							⊢ 𝐴  ⊆   ℋ  | 
						
						
							| 2 | 
							
								
							 | 
							spanun.2 | 
							⊢ 𝐵  ⊆   ℋ  | 
						
						
							| 3 | 
							
								
							 | 
							spancl | 
							⊢ ( 𝐴  ⊆   ℋ  →  ( span ‘ 𝐴 )  ∈   Sℋ  )  | 
						
						
							| 4 | 
							
								1 3
							 | 
							ax-mp | 
							⊢ ( span ‘ 𝐴 )  ∈   Sℋ   | 
						
						
							| 5 | 
							
								
							 | 
							spancl | 
							⊢ ( 𝐵  ⊆   ℋ  →  ( span ‘ 𝐵 )  ∈   Sℋ  )  | 
						
						
							| 6 | 
							
								2 5
							 | 
							ax-mp | 
							⊢ ( span ‘ 𝐵 )  ∈   Sℋ   | 
						
						
							| 7 | 
							
								4 6
							 | 
							shscli | 
							⊢ ( ( span ‘ 𝐴 )  +ℋ  ( span ‘ 𝐵 ) )  ∈   Sℋ   | 
						
						
							| 8 | 
							
								7
							 | 
							shssii | 
							⊢ ( ( span ‘ 𝐴 )  +ℋ  ( span ‘ 𝐵 ) )  ⊆   ℋ  | 
						
						
							| 9 | 
							
								
							 | 
							spanss2 | 
							⊢ ( 𝐴  ⊆   ℋ  →  𝐴  ⊆  ( span ‘ 𝐴 ) )  | 
						
						
							| 10 | 
							
								1 9
							 | 
							ax-mp | 
							⊢ 𝐴  ⊆  ( span ‘ 𝐴 )  | 
						
						
							| 11 | 
							
								
							 | 
							spanss2 | 
							⊢ ( 𝐵  ⊆   ℋ  →  𝐵  ⊆  ( span ‘ 𝐵 ) )  | 
						
						
							| 12 | 
							
								2 11
							 | 
							ax-mp | 
							⊢ 𝐵  ⊆  ( span ‘ 𝐵 )  | 
						
						
							| 13 | 
							
								
							 | 
							unss12 | 
							⊢ ( ( 𝐴  ⊆  ( span ‘ 𝐴 )  ∧  𝐵  ⊆  ( span ‘ 𝐵 ) )  →  ( 𝐴  ∪  𝐵 )  ⊆  ( ( span ‘ 𝐴 )  ∪  ( span ‘ 𝐵 ) ) )  | 
						
						
							| 14 | 
							
								10 12 13
							 | 
							mp2an | 
							⊢ ( 𝐴  ∪  𝐵 )  ⊆  ( ( span ‘ 𝐴 )  ∪  ( span ‘ 𝐵 ) )  | 
						
						
							| 15 | 
							
								4 6
							 | 
							shunssi | 
							⊢ ( ( span ‘ 𝐴 )  ∪  ( span ‘ 𝐵 ) )  ⊆  ( ( span ‘ 𝐴 )  +ℋ  ( span ‘ 𝐵 ) )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							sstri | 
							⊢ ( 𝐴  ∪  𝐵 )  ⊆  ( ( span ‘ 𝐴 )  +ℋ  ( span ‘ 𝐵 ) )  | 
						
						
							| 17 | 
							
								
							 | 
							spanss | 
							⊢ ( ( ( ( span ‘ 𝐴 )  +ℋ  ( span ‘ 𝐵 ) )  ⊆   ℋ  ∧  ( 𝐴  ∪  𝐵 )  ⊆  ( ( span ‘ 𝐴 )  +ℋ  ( span ‘ 𝐵 ) ) )  →  ( span ‘ ( 𝐴  ∪  𝐵 ) )  ⊆  ( span ‘ ( ( span ‘ 𝐴 )  +ℋ  ( span ‘ 𝐵 ) ) ) )  | 
						
						
							| 18 | 
							
								8 16 17
							 | 
							mp2an | 
							⊢ ( span ‘ ( 𝐴  ∪  𝐵 ) )  ⊆  ( span ‘ ( ( span ‘ 𝐴 )  +ℋ  ( span ‘ 𝐵 ) ) )  | 
						
						
							| 19 | 
							
								
							 | 
							spanid | 
							⊢ ( ( ( span ‘ 𝐴 )  +ℋ  ( span ‘ 𝐵 ) )  ∈   Sℋ   →  ( span ‘ ( ( span ‘ 𝐴 )  +ℋ  ( span ‘ 𝐵 ) ) )  =  ( ( span ‘ 𝐴 )  +ℋ  ( span ‘ 𝐵 ) ) )  | 
						
						
							| 20 | 
							
								7 19
							 | 
							ax-mp | 
							⊢ ( span ‘ ( ( span ‘ 𝐴 )  +ℋ  ( span ‘ 𝐵 ) ) )  =  ( ( span ‘ 𝐴 )  +ℋ  ( span ‘ 𝐵 ) )  | 
						
						
							| 21 | 
							
								18 20
							 | 
							sseqtri | 
							⊢ ( span ‘ ( 𝐴  ∪  𝐵 ) )  ⊆  ( ( span ‘ 𝐴 )  +ℋ  ( span ‘ 𝐵 ) )  | 
						
						
							| 22 | 
							
								4 6
							 | 
							shseli | 
							⊢ ( 𝑥  ∈  ( ( span ‘ 𝐴 )  +ℋ  ( span ‘ 𝐵 ) )  ↔  ∃ 𝑧  ∈  ( span ‘ 𝐴 ) ∃ 𝑤  ∈  ( span ‘ 𝐵 ) 𝑥  =  ( 𝑧  +ℎ  𝑤 ) )  | 
						
						
							| 23 | 
							
								
							 | 
							r2ex | 
							⊢ ( ∃ 𝑧  ∈  ( span ‘ 𝐴 ) ∃ 𝑤  ∈  ( span ‘ 𝐵 ) 𝑥  =  ( 𝑧  +ℎ  𝑤 )  ↔  ∃ 𝑧 ∃ 𝑤 ( ( 𝑧  ∈  ( span ‘ 𝐴 )  ∧  𝑤  ∈  ( span ‘ 𝐵 ) )  ∧  𝑥  =  ( 𝑧  +ℎ  𝑤 ) ) )  | 
						
						
							| 24 | 
							
								22 23
							 | 
							bitri | 
							⊢ ( 𝑥  ∈  ( ( span ‘ 𝐴 )  +ℋ  ( span ‘ 𝐵 ) )  ↔  ∃ 𝑧 ∃ 𝑤 ( ( 𝑧  ∈  ( span ‘ 𝐴 )  ∧  𝑤  ∈  ( span ‘ 𝐵 ) )  ∧  𝑥  =  ( 𝑧  +ℎ  𝑤 ) ) )  | 
						
						
							| 25 | 
							
								
							 | 
							vex | 
							⊢ 𝑧  ∈  V  | 
						
						
							| 26 | 
							
								25
							 | 
							elspani | 
							⊢ ( 𝐴  ⊆   ℋ  →  ( 𝑧  ∈  ( span ‘ 𝐴 )  ↔  ∀ 𝑦  ∈   Sℋ  ( 𝐴  ⊆  𝑦  →  𝑧  ∈  𝑦 ) ) )  | 
						
						
							| 27 | 
							
								1 26
							 | 
							ax-mp | 
							⊢ ( 𝑧  ∈  ( span ‘ 𝐴 )  ↔  ∀ 𝑦  ∈   Sℋ  ( 𝐴  ⊆  𝑦  →  𝑧  ∈  𝑦 ) )  | 
						
						
							| 28 | 
							
								
							 | 
							vex | 
							⊢ 𝑤  ∈  V  | 
						
						
							| 29 | 
							
								28
							 | 
							elspani | 
							⊢ ( 𝐵  ⊆   ℋ  →  ( 𝑤  ∈  ( span ‘ 𝐵 )  ↔  ∀ 𝑦  ∈   Sℋ  ( 𝐵  ⊆  𝑦  →  𝑤  ∈  𝑦 ) ) )  | 
						
						
							| 30 | 
							
								2 29
							 | 
							ax-mp | 
							⊢ ( 𝑤  ∈  ( span ‘ 𝐵 )  ↔  ∀ 𝑦  ∈   Sℋ  ( 𝐵  ⊆  𝑦  →  𝑤  ∈  𝑦 ) )  | 
						
						
							| 31 | 
							
								27 30
							 | 
							anbi12i | 
							⊢ ( ( 𝑧  ∈  ( span ‘ 𝐴 )  ∧  𝑤  ∈  ( span ‘ 𝐵 ) )  ↔  ( ∀ 𝑦  ∈   Sℋ  ( 𝐴  ⊆  𝑦  →  𝑧  ∈  𝑦 )  ∧  ∀ 𝑦  ∈   Sℋ  ( 𝐵  ⊆  𝑦  →  𝑤  ∈  𝑦 ) ) )  | 
						
						
							| 32 | 
							
								
							 | 
							r19.26 | 
							⊢ ( ∀ 𝑦  ∈   Sℋ  ( ( 𝐴  ⊆  𝑦  →  𝑧  ∈  𝑦 )  ∧  ( 𝐵  ⊆  𝑦  →  𝑤  ∈  𝑦 ) )  ↔  ( ∀ 𝑦  ∈   Sℋ  ( 𝐴  ⊆  𝑦  →  𝑧  ∈  𝑦 )  ∧  ∀ 𝑦  ∈   Sℋ  ( 𝐵  ⊆  𝑦  →  𝑤  ∈  𝑦 ) ) )  | 
						
						
							| 33 | 
							
								31 32
							 | 
							bitr4i | 
							⊢ ( ( 𝑧  ∈  ( span ‘ 𝐴 )  ∧  𝑤  ∈  ( span ‘ 𝐵 ) )  ↔  ∀ 𝑦  ∈   Sℋ  ( ( 𝐴  ⊆  𝑦  →  𝑧  ∈  𝑦 )  ∧  ( 𝐵  ⊆  𝑦  →  𝑤  ∈  𝑦 ) ) )  | 
						
						
							| 34 | 
							
								
							 | 
							r19.27v | 
							⊢ ( ( ∀ 𝑦  ∈   Sℋ  ( ( 𝐴  ⊆  𝑦  →  𝑧  ∈  𝑦 )  ∧  ( 𝐵  ⊆  𝑦  →  𝑤  ∈  𝑦 ) )  ∧  𝑥  =  ( 𝑧  +ℎ  𝑤 ) )  →  ∀ 𝑦  ∈   Sℋ  ( ( ( 𝐴  ⊆  𝑦  →  𝑧  ∈  𝑦 )  ∧  ( 𝐵  ⊆  𝑦  →  𝑤  ∈  𝑦 ) )  ∧  𝑥  =  ( 𝑧  +ℎ  𝑤 ) ) )  | 
						
						
							| 35 | 
							
								33 34
							 | 
							sylanb | 
							⊢ ( ( ( 𝑧  ∈  ( span ‘ 𝐴 )  ∧  𝑤  ∈  ( span ‘ 𝐵 ) )  ∧  𝑥  =  ( 𝑧  +ℎ  𝑤 ) )  →  ∀ 𝑦  ∈   Sℋ  ( ( ( 𝐴  ⊆  𝑦  →  𝑧  ∈  𝑦 )  ∧  ( 𝐵  ⊆  𝑦  →  𝑤  ∈  𝑦 ) )  ∧  𝑥  =  ( 𝑧  +ℎ  𝑤 ) ) )  | 
						
						
							| 36 | 
							
								
							 | 
							unss | 
							⊢ ( ( 𝐴  ⊆  𝑦  ∧  𝐵  ⊆  𝑦 )  ↔  ( 𝐴  ∪  𝐵 )  ⊆  𝑦 )  | 
						
						
							| 37 | 
							
								
							 | 
							anim12 | 
							⊢ ( ( ( 𝐴  ⊆  𝑦  →  𝑧  ∈  𝑦 )  ∧  ( 𝐵  ⊆  𝑦  →  𝑤  ∈  𝑦 ) )  →  ( ( 𝐴  ⊆  𝑦  ∧  𝐵  ⊆  𝑦 )  →  ( 𝑧  ∈  𝑦  ∧  𝑤  ∈  𝑦 ) ) )  | 
						
						
							| 38 | 
							
								36 37
							 | 
							biimtrrid | 
							⊢ ( ( ( 𝐴  ⊆  𝑦  →  𝑧  ∈  𝑦 )  ∧  ( 𝐵  ⊆  𝑦  →  𝑤  ∈  𝑦 ) )  →  ( ( 𝐴  ∪  𝐵 )  ⊆  𝑦  →  ( 𝑧  ∈  𝑦  ∧  𝑤  ∈  𝑦 ) ) )  | 
						
						
							| 39 | 
							
								
							 | 
							shaddcl | 
							⊢ ( ( 𝑦  ∈   Sℋ   ∧  𝑧  ∈  𝑦  ∧  𝑤  ∈  𝑦 )  →  ( 𝑧  +ℎ  𝑤 )  ∈  𝑦 )  | 
						
						
							| 40 | 
							
								39
							 | 
							3expib | 
							⊢ ( 𝑦  ∈   Sℋ   →  ( ( 𝑧  ∈  𝑦  ∧  𝑤  ∈  𝑦 )  →  ( 𝑧  +ℎ  𝑤 )  ∈  𝑦 ) )  | 
						
						
							| 41 | 
							
								38 40
							 | 
							sylan9r | 
							⊢ ( ( 𝑦  ∈   Sℋ   ∧  ( ( 𝐴  ⊆  𝑦  →  𝑧  ∈  𝑦 )  ∧  ( 𝐵  ⊆  𝑦  →  𝑤  ∈  𝑦 ) ) )  →  ( ( 𝐴  ∪  𝐵 )  ⊆  𝑦  →  ( 𝑧  +ℎ  𝑤 )  ∈  𝑦 ) )  | 
						
						
							| 42 | 
							
								
							 | 
							eleq1 | 
							⊢ ( 𝑥  =  ( 𝑧  +ℎ  𝑤 )  →  ( 𝑥  ∈  𝑦  ↔  ( 𝑧  +ℎ  𝑤 )  ∈  𝑦 ) )  | 
						
						
							| 43 | 
							
								42
							 | 
							biimprd | 
							⊢ ( 𝑥  =  ( 𝑧  +ℎ  𝑤 )  →  ( ( 𝑧  +ℎ  𝑤 )  ∈  𝑦  →  𝑥  ∈  𝑦 ) )  | 
						
						
							| 44 | 
							
								41 43
							 | 
							sylan9 | 
							⊢ ( ( ( 𝑦  ∈   Sℋ   ∧  ( ( 𝐴  ⊆  𝑦  →  𝑧  ∈  𝑦 )  ∧  ( 𝐵  ⊆  𝑦  →  𝑤  ∈  𝑦 ) ) )  ∧  𝑥  =  ( 𝑧  +ℎ  𝑤 ) )  →  ( ( 𝐴  ∪  𝐵 )  ⊆  𝑦  →  𝑥  ∈  𝑦 ) )  | 
						
						
							| 45 | 
							
								44
							 | 
							expl | 
							⊢ ( 𝑦  ∈   Sℋ   →  ( ( ( ( 𝐴  ⊆  𝑦  →  𝑧  ∈  𝑦 )  ∧  ( 𝐵  ⊆  𝑦  →  𝑤  ∈  𝑦 ) )  ∧  𝑥  =  ( 𝑧  +ℎ  𝑤 ) )  →  ( ( 𝐴  ∪  𝐵 )  ⊆  𝑦  →  𝑥  ∈  𝑦 ) ) )  | 
						
						
							| 46 | 
							
								45
							 | 
							ralimia | 
							⊢ ( ∀ 𝑦  ∈   Sℋ  ( ( ( 𝐴  ⊆  𝑦  →  𝑧  ∈  𝑦 )  ∧  ( 𝐵  ⊆  𝑦  →  𝑤  ∈  𝑦 ) )  ∧  𝑥  =  ( 𝑧  +ℎ  𝑤 ) )  →  ∀ 𝑦  ∈   Sℋ  ( ( 𝐴  ∪  𝐵 )  ⊆  𝑦  →  𝑥  ∈  𝑦 ) )  | 
						
						
							| 47 | 
							
								1 2
							 | 
							unssi | 
							⊢ ( 𝐴  ∪  𝐵 )  ⊆   ℋ  | 
						
						
							| 48 | 
							
								
							 | 
							vex | 
							⊢ 𝑥  ∈  V  | 
						
						
							| 49 | 
							
								48
							 | 
							elspani | 
							⊢ ( ( 𝐴  ∪  𝐵 )  ⊆   ℋ  →  ( 𝑥  ∈  ( span ‘ ( 𝐴  ∪  𝐵 ) )  ↔  ∀ 𝑦  ∈   Sℋ  ( ( 𝐴  ∪  𝐵 )  ⊆  𝑦  →  𝑥  ∈  𝑦 ) ) )  | 
						
						
							| 50 | 
							
								47 49
							 | 
							ax-mp | 
							⊢ ( 𝑥  ∈  ( span ‘ ( 𝐴  ∪  𝐵 ) )  ↔  ∀ 𝑦  ∈   Sℋ  ( ( 𝐴  ∪  𝐵 )  ⊆  𝑦  →  𝑥  ∈  𝑦 ) )  | 
						
						
							| 51 | 
							
								46 50
							 | 
							sylibr | 
							⊢ ( ∀ 𝑦  ∈   Sℋ  ( ( ( 𝐴  ⊆  𝑦  →  𝑧  ∈  𝑦 )  ∧  ( 𝐵  ⊆  𝑦  →  𝑤  ∈  𝑦 ) )  ∧  𝑥  =  ( 𝑧  +ℎ  𝑤 ) )  →  𝑥  ∈  ( span ‘ ( 𝐴  ∪  𝐵 ) ) )  | 
						
						
							| 52 | 
							
								35 51
							 | 
							syl | 
							⊢ ( ( ( 𝑧  ∈  ( span ‘ 𝐴 )  ∧  𝑤  ∈  ( span ‘ 𝐵 ) )  ∧  𝑥  =  ( 𝑧  +ℎ  𝑤 ) )  →  𝑥  ∈  ( span ‘ ( 𝐴  ∪  𝐵 ) ) )  | 
						
						
							| 53 | 
							
								52
							 | 
							exlimivv | 
							⊢ ( ∃ 𝑧 ∃ 𝑤 ( ( 𝑧  ∈  ( span ‘ 𝐴 )  ∧  𝑤  ∈  ( span ‘ 𝐵 ) )  ∧  𝑥  =  ( 𝑧  +ℎ  𝑤 ) )  →  𝑥  ∈  ( span ‘ ( 𝐴  ∪  𝐵 ) ) )  | 
						
						
							| 54 | 
							
								24 53
							 | 
							sylbi | 
							⊢ ( 𝑥  ∈  ( ( span ‘ 𝐴 )  +ℋ  ( span ‘ 𝐵 ) )  →  𝑥  ∈  ( span ‘ ( 𝐴  ∪  𝐵 ) ) )  | 
						
						
							| 55 | 
							
								54
							 | 
							ssriv | 
							⊢ ( ( span ‘ 𝐴 )  +ℋ  ( span ‘ 𝐵 ) )  ⊆  ( span ‘ ( 𝐴  ∪  𝐵 ) )  | 
						
						
							| 56 | 
							
								21 55
							 | 
							eqssi | 
							⊢ ( span ‘ ( 𝐴  ∪  𝐵 ) )  =  ( ( span ‘ 𝐴 )  +ℋ  ( span ‘ 𝐵 ) )  |