Step |
Hyp |
Ref |
Expression |
1 |
|
spanunsn.1 |
⊢ 𝐴 ∈ Cℋ |
2 |
|
spanunsn.2 |
⊢ 𝐵 ∈ ℋ |
3 |
1
|
chshii |
⊢ 𝐴 ∈ Sℋ |
4 |
|
snssi |
⊢ ( 𝐵 ∈ ℋ → { 𝐵 } ⊆ ℋ ) |
5 |
|
spancl |
⊢ ( { 𝐵 } ⊆ ℋ → ( span ‘ { 𝐵 } ) ∈ Sℋ ) |
6 |
2 4 5
|
mp2b |
⊢ ( span ‘ { 𝐵 } ) ∈ Sℋ |
7 |
3 6
|
shseli |
⊢ ( 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) ↔ ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ ( span ‘ { 𝐵 } ) 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) |
8 |
2
|
elspansni |
⊢ ( 𝑧 ∈ ( span ‘ { 𝐵 } ) ↔ ∃ 𝑤 ∈ ℂ 𝑧 = ( 𝑤 ·ℎ 𝐵 ) ) |
9 |
1 2
|
pjclii |
⊢ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ∈ 𝐴 |
10 |
|
shmulcl |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝑤 ∈ ℂ ∧ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ∈ 𝐴 ) → ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ∈ 𝐴 ) |
11 |
3 9 10
|
mp3an13 |
⊢ ( 𝑤 ∈ ℂ → ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ∈ 𝐴 ) |
12 |
|
shaddcl |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝑦 ∈ 𝐴 ∧ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ∈ 𝐴 ) → ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) ∈ 𝐴 ) |
13 |
11 12
|
syl3an3 |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) → ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) ∈ 𝐴 ) |
14 |
3 13
|
mp3an1 |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) → ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) ∈ 𝐴 ) |
15 |
1
|
choccli |
⊢ ( ⊥ ‘ 𝐴 ) ∈ Cℋ |
16 |
15 2
|
pjhclii |
⊢ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ∈ ℋ |
17 |
|
spansnmul |
⊢ ( ( ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ∈ ℋ ∧ 𝑤 ∈ ℂ ) → ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ∈ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) |
18 |
16 17
|
mpan |
⊢ ( 𝑤 ∈ ℂ → ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ∈ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) |
19 |
18
|
adantl |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) → ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ∈ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) |
20 |
1 2
|
pjpji |
⊢ 𝐵 = ( ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) |
21 |
20
|
oveq2i |
⊢ ( 𝑤 ·ℎ 𝐵 ) = ( 𝑤 ·ℎ ( ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) |
22 |
1 2
|
pjhclii |
⊢ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ∈ ℋ |
23 |
|
ax-hvdistr1 |
⊢ ( ( 𝑤 ∈ ℂ ∧ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ∈ ℋ ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ∈ ℋ ) → ( 𝑤 ·ℎ ( ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) = ( ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) |
24 |
22 16 23
|
mp3an23 |
⊢ ( 𝑤 ∈ ℂ → ( 𝑤 ·ℎ ( ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) = ( ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) |
25 |
21 24
|
syl5eq |
⊢ ( 𝑤 ∈ ℂ → ( 𝑤 ·ℎ 𝐵 ) = ( ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) |
26 |
25
|
adantl |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) → ( 𝑤 ·ℎ 𝐵 ) = ( ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) |
27 |
26
|
oveq2d |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) → ( 𝑦 +ℎ ( 𝑤 ·ℎ 𝐵 ) ) = ( 𝑦 +ℎ ( ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) ) |
28 |
1
|
cheli |
⊢ ( 𝑦 ∈ 𝐴 → 𝑦 ∈ ℋ ) |
29 |
|
hvmulcl |
⊢ ( ( 𝑤 ∈ ℂ ∧ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ∈ ℋ ) → ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ∈ ℋ ) |
30 |
22 29
|
mpan2 |
⊢ ( 𝑤 ∈ ℂ → ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ∈ ℋ ) |
31 |
|
hvmulcl |
⊢ ( ( 𝑤 ∈ ℂ ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ∈ ℋ ) → ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ∈ ℋ ) |
32 |
16 31
|
mpan2 |
⊢ ( 𝑤 ∈ ℂ → ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ∈ ℋ ) |
33 |
30 32
|
jca |
⊢ ( 𝑤 ∈ ℂ → ( ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ∈ ℋ ∧ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ∈ ℋ ) ) |
34 |
|
ax-hvass |
⊢ ( ( 𝑦 ∈ ℋ ∧ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ∈ ℋ ∧ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ∈ ℋ ) → ( ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) = ( 𝑦 +ℎ ( ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) ) |
35 |
34
|
3expb |
⊢ ( ( 𝑦 ∈ ℋ ∧ ( ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ∈ ℋ ∧ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ∈ ℋ ) ) → ( ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) = ( 𝑦 +ℎ ( ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) ) |
36 |
28 33 35
|
syl2an |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) → ( ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) = ( 𝑦 +ℎ ( ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) ) |
37 |
27 36
|
eqtr4d |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) → ( 𝑦 +ℎ ( 𝑤 ·ℎ 𝐵 ) ) = ( ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) |
38 |
|
rspceov |
⊢ ( ( ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) ∈ 𝐴 ∧ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ∈ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ∧ ( 𝑦 +ℎ ( 𝑤 ·ℎ 𝐵 ) ) = ( ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) → ∃ 𝑣 ∈ 𝐴 ∃ 𝑢 ∈ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ( 𝑦 +ℎ ( 𝑤 ·ℎ 𝐵 ) ) = ( 𝑣 +ℎ 𝑢 ) ) |
39 |
14 19 37 38
|
syl3anc |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) → ∃ 𝑣 ∈ 𝐴 ∃ 𝑢 ∈ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ( 𝑦 +ℎ ( 𝑤 ·ℎ 𝐵 ) ) = ( 𝑣 +ℎ 𝑢 ) ) |
40 |
|
snssi |
⊢ ( ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ∈ ℋ → { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ⊆ ℋ ) |
41 |
|
spancl |
⊢ ( { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ⊆ ℋ → ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ∈ Sℋ ) |
42 |
16 40 41
|
mp2b |
⊢ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ∈ Sℋ |
43 |
3 42
|
shseli |
⊢ ( ( 𝑦 +ℎ ( 𝑤 ·ℎ 𝐵 ) ) ∈ ( 𝐴 +ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) ↔ ∃ 𝑣 ∈ 𝐴 ∃ 𝑢 ∈ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ( 𝑦 +ℎ ( 𝑤 ·ℎ 𝐵 ) ) = ( 𝑣 +ℎ 𝑢 ) ) |
44 |
39 43
|
sylibr |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) → ( 𝑦 +ℎ ( 𝑤 ·ℎ 𝐵 ) ) ∈ ( 𝐴 +ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) ) |
45 |
|
oveq2 |
⊢ ( 𝑧 = ( 𝑤 ·ℎ 𝐵 ) → ( 𝑦 +ℎ 𝑧 ) = ( 𝑦 +ℎ ( 𝑤 ·ℎ 𝐵 ) ) ) |
46 |
45
|
eqeq2d |
⊢ ( 𝑧 = ( 𝑤 ·ℎ 𝐵 ) → ( 𝑥 = ( 𝑦 +ℎ 𝑧 ) ↔ 𝑥 = ( 𝑦 +ℎ ( 𝑤 ·ℎ 𝐵 ) ) ) ) |
47 |
46
|
biimpa |
⊢ ( ( 𝑧 = ( 𝑤 ·ℎ 𝐵 ) ∧ 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) → 𝑥 = ( 𝑦 +ℎ ( 𝑤 ·ℎ 𝐵 ) ) ) |
48 |
|
eleq1 |
⊢ ( 𝑥 = ( 𝑦 +ℎ ( 𝑤 ·ℎ 𝐵 ) ) → ( 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) ↔ ( 𝑦 +ℎ ( 𝑤 ·ℎ 𝐵 ) ) ∈ ( 𝐴 +ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) ) ) |
49 |
48
|
biimparc |
⊢ ( ( ( 𝑦 +ℎ ( 𝑤 ·ℎ 𝐵 ) ) ∈ ( 𝐴 +ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) ∧ 𝑥 = ( 𝑦 +ℎ ( 𝑤 ·ℎ 𝐵 ) ) ) → 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) ) |
50 |
44 47 49
|
syl2an |
⊢ ( ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) ∧ ( 𝑧 = ( 𝑤 ·ℎ 𝐵 ) ∧ 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) ) → 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) ) |
51 |
50
|
exp43 |
⊢ ( 𝑦 ∈ 𝐴 → ( 𝑤 ∈ ℂ → ( 𝑧 = ( 𝑤 ·ℎ 𝐵 ) → ( 𝑥 = ( 𝑦 +ℎ 𝑧 ) → 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) ) ) ) ) |
52 |
51
|
rexlimdv |
⊢ ( 𝑦 ∈ 𝐴 → ( ∃ 𝑤 ∈ ℂ 𝑧 = ( 𝑤 ·ℎ 𝐵 ) → ( 𝑥 = ( 𝑦 +ℎ 𝑧 ) → 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) ) ) ) |
53 |
8 52
|
syl5bi |
⊢ ( 𝑦 ∈ 𝐴 → ( 𝑧 ∈ ( span ‘ { 𝐵 } ) → ( 𝑥 = ( 𝑦 +ℎ 𝑧 ) → 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) ) ) ) |
54 |
53
|
rexlimdv |
⊢ ( 𝑦 ∈ 𝐴 → ( ∃ 𝑧 ∈ ( span ‘ { 𝐵 } ) 𝑥 = ( 𝑦 +ℎ 𝑧 ) → 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) ) ) |
55 |
54
|
rexlimiv |
⊢ ( ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ ( span ‘ { 𝐵 } ) 𝑥 = ( 𝑦 +ℎ 𝑧 ) → 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) ) |
56 |
7 55
|
sylbi |
⊢ ( 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) → 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) ) |
57 |
3 42
|
shseli |
⊢ ( 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) ↔ ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) |
58 |
16
|
elspansni |
⊢ ( 𝑧 ∈ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ↔ ∃ 𝑤 ∈ ℂ 𝑧 = ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) |
59 |
|
negcl |
⊢ ( 𝑤 ∈ ℂ → - 𝑤 ∈ ℂ ) |
60 |
|
shmulcl |
⊢ ( ( 𝐴 ∈ Sℋ ∧ - 𝑤 ∈ ℂ ∧ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ∈ 𝐴 ) → ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ∈ 𝐴 ) |
61 |
3 9 60
|
mp3an13 |
⊢ ( - 𝑤 ∈ ℂ → ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ∈ 𝐴 ) |
62 |
59 61
|
syl |
⊢ ( 𝑤 ∈ ℂ → ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ∈ 𝐴 ) |
63 |
|
shaddcl |
⊢ ( ( 𝐴 ∈ Sℋ ∧ ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ 𝑦 ) ∈ 𝐴 ) |
64 |
62 63
|
syl3an2 |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝑤 ∈ ℂ ∧ 𝑦 ∈ 𝐴 ) → ( ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ 𝑦 ) ∈ 𝐴 ) |
65 |
3 64
|
mp3an1 |
⊢ ( ( 𝑤 ∈ ℂ ∧ 𝑦 ∈ 𝐴 ) → ( ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ 𝑦 ) ∈ 𝐴 ) |
66 |
65
|
ancoms |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) → ( ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ 𝑦 ) ∈ 𝐴 ) |
67 |
|
spansnmul |
⊢ ( ( 𝐵 ∈ ℋ ∧ 𝑤 ∈ ℂ ) → ( 𝑤 ·ℎ 𝐵 ) ∈ ( span ‘ { 𝐵 } ) ) |
68 |
2 67
|
mpan |
⊢ ( 𝑤 ∈ ℂ → ( 𝑤 ·ℎ 𝐵 ) ∈ ( span ‘ { 𝐵 } ) ) |
69 |
68
|
adantl |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) → ( 𝑤 ·ℎ 𝐵 ) ∈ ( span ‘ { 𝐵 } ) ) |
70 |
|
hvm1neg |
⊢ ( ( 𝑤 ∈ ℂ ∧ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ∈ ℋ ) → ( - 1 ·ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) = ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) |
71 |
22 70
|
mpan2 |
⊢ ( 𝑤 ∈ ℂ → ( - 1 ·ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) = ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) |
72 |
71
|
oveq2d |
⊢ ( 𝑤 ∈ ℂ → ( ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( - 1 ·ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) ) = ( ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) ) |
73 |
|
hvnegid |
⊢ ( ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ∈ ℋ → ( ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( - 1 ·ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) ) = 0ℎ ) |
74 |
30 73
|
syl |
⊢ ( 𝑤 ∈ ℂ → ( ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( - 1 ·ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) ) = 0ℎ ) |
75 |
|
hvmulcl |
⊢ ( ( - 𝑤 ∈ ℂ ∧ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ∈ ℋ ) → ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ∈ ℋ ) |
76 |
59 22 75
|
sylancl |
⊢ ( 𝑤 ∈ ℂ → ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ∈ ℋ ) |
77 |
|
ax-hvcom |
⊢ ( ( ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ∈ ℋ ∧ ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ∈ ℋ ) → ( ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) = ( ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) ) |
78 |
30 76 77
|
syl2anc |
⊢ ( 𝑤 ∈ ℂ → ( ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) = ( ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) ) |
79 |
72 74 78
|
3eqtr3d |
⊢ ( 𝑤 ∈ ℂ → 0ℎ = ( ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) ) |
80 |
79
|
adantl |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) → 0ℎ = ( ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) ) |
81 |
80
|
oveq1d |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) → ( 0ℎ +ℎ ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) = ( ( ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) +ℎ ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) ) |
82 |
|
hvaddcl |
⊢ ( ( 𝑦 ∈ ℋ ∧ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ∈ ℋ ) → ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ∈ ℋ ) |
83 |
28 32 82
|
syl2an |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) → ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ∈ ℋ ) |
84 |
|
hvaddid2 |
⊢ ( ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ∈ ℋ → ( 0ℎ +ℎ ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) = ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) |
85 |
83 84
|
syl |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) → ( 0ℎ +ℎ ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) = ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) |
86 |
76 30
|
jca |
⊢ ( 𝑤 ∈ ℂ → ( ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ∈ ℋ ∧ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ∈ ℋ ) ) |
87 |
86
|
adantl |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) → ( ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ∈ ℋ ∧ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ∈ ℋ ) ) |
88 |
28 32
|
anim12i |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) → ( 𝑦 ∈ ℋ ∧ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ∈ ℋ ) ) |
89 |
|
hvadd4 |
⊢ ( ( ( ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ∈ ℋ ∧ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ∈ ℋ ) ∧ ( 𝑦 ∈ ℋ ∧ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ∈ ℋ ) ) → ( ( ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) +ℎ ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) = ( ( ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ 𝑦 ) +ℎ ( ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) ) |
90 |
87 88 89
|
syl2anc |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) → ( ( ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) ) +ℎ ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) = ( ( ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ 𝑦 ) +ℎ ( ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) ) |
91 |
81 85 90
|
3eqtr3d |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) → ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) = ( ( ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ 𝑦 ) +ℎ ( ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) ) |
92 |
26
|
oveq2d |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) → ( ( ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ 𝑦 ) +ℎ ( 𝑤 ·ℎ 𝐵 ) ) = ( ( ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ 𝑦 ) +ℎ ( ( 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) ) |
93 |
91 92
|
eqtr4d |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) → ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) = ( ( ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ 𝑦 ) +ℎ ( 𝑤 ·ℎ 𝐵 ) ) ) |
94 |
|
rspceov |
⊢ ( ( ( ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ 𝑦 ) ∈ 𝐴 ∧ ( 𝑤 ·ℎ 𝐵 ) ∈ ( span ‘ { 𝐵 } ) ∧ ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) = ( ( ( - 𝑤 ·ℎ ( ( projℎ ‘ 𝐴 ) ‘ 𝐵 ) ) +ℎ 𝑦 ) +ℎ ( 𝑤 ·ℎ 𝐵 ) ) ) → ∃ 𝑣 ∈ 𝐴 ∃ 𝑢 ∈ ( span ‘ { 𝐵 } ) ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) = ( 𝑣 +ℎ 𝑢 ) ) |
95 |
66 69 93 94
|
syl3anc |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) → ∃ 𝑣 ∈ 𝐴 ∃ 𝑢 ∈ ( span ‘ { 𝐵 } ) ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) = ( 𝑣 +ℎ 𝑢 ) ) |
96 |
3 6
|
shseli |
⊢ ( ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ∈ ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) ↔ ∃ 𝑣 ∈ 𝐴 ∃ 𝑢 ∈ ( span ‘ { 𝐵 } ) ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) = ( 𝑣 +ℎ 𝑢 ) ) |
97 |
95 96
|
sylibr |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) → ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ∈ ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) ) |
98 |
|
oveq2 |
⊢ ( 𝑧 = ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) → ( 𝑦 +ℎ 𝑧 ) = ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) |
99 |
98
|
eqeq2d |
⊢ ( 𝑧 = ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) → ( 𝑥 = ( 𝑦 +ℎ 𝑧 ) ↔ 𝑥 = ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) ) |
100 |
99
|
biimpa |
⊢ ( ( 𝑧 = ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ∧ 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) → 𝑥 = ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) |
101 |
|
eleq1 |
⊢ ( 𝑥 = ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) → ( 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) ↔ ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ∈ ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) ) ) |
102 |
101
|
biimparc |
⊢ ( ( ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ∈ ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) ∧ 𝑥 = ( 𝑦 +ℎ ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ) ) → 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) ) |
103 |
97 100 102
|
syl2an |
⊢ ( ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ ℂ ) ∧ ( 𝑧 = ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) ∧ 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) ) → 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) ) |
104 |
103
|
exp43 |
⊢ ( 𝑦 ∈ 𝐴 → ( 𝑤 ∈ ℂ → ( 𝑧 = ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) → ( 𝑥 = ( 𝑦 +ℎ 𝑧 ) → 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) ) ) ) ) |
105 |
104
|
rexlimdv |
⊢ ( 𝑦 ∈ 𝐴 → ( ∃ 𝑤 ∈ ℂ 𝑧 = ( 𝑤 ·ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ) → ( 𝑥 = ( 𝑦 +ℎ 𝑧 ) → 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) ) ) ) |
106 |
58 105
|
syl5bi |
⊢ ( 𝑦 ∈ 𝐴 → ( 𝑧 ∈ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) → ( 𝑥 = ( 𝑦 +ℎ 𝑧 ) → 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) ) ) ) |
107 |
106
|
rexlimdv |
⊢ ( 𝑦 ∈ 𝐴 → ( ∃ 𝑧 ∈ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) 𝑥 = ( 𝑦 +ℎ 𝑧 ) → 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) ) ) |
108 |
107
|
rexlimiv |
⊢ ( ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) 𝑥 = ( 𝑦 +ℎ 𝑧 ) → 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) ) |
109 |
57 108
|
sylbi |
⊢ ( 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) → 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) ) |
110 |
56 109
|
impbii |
⊢ ( 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) ↔ 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) ) |
111 |
110
|
eqriv |
⊢ ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) = ( 𝐴 +ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) |
112 |
1
|
chssii |
⊢ 𝐴 ⊆ ℋ |
113 |
2 4
|
ax-mp |
⊢ { 𝐵 } ⊆ ℋ |
114 |
112 113
|
spanuni |
⊢ ( span ‘ ( 𝐴 ∪ { 𝐵 } ) ) = ( ( span ‘ 𝐴 ) +ℋ ( span ‘ { 𝐵 } ) ) |
115 |
|
spanid |
⊢ ( 𝐴 ∈ Sℋ → ( span ‘ 𝐴 ) = 𝐴 ) |
116 |
3 115
|
ax-mp |
⊢ ( span ‘ 𝐴 ) = 𝐴 |
117 |
116
|
oveq1i |
⊢ ( ( span ‘ 𝐴 ) +ℋ ( span ‘ { 𝐵 } ) ) = ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) |
118 |
114 117
|
eqtri |
⊢ ( span ‘ ( 𝐴 ∪ { 𝐵 } ) ) = ( 𝐴 +ℋ ( span ‘ { 𝐵 } ) ) |
119 |
16 40
|
ax-mp |
⊢ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ⊆ ℋ |
120 |
112 119
|
spanuni |
⊢ ( span ‘ ( 𝐴 ∪ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) = ( ( span ‘ 𝐴 ) +ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) |
121 |
116
|
oveq1i |
⊢ ( ( span ‘ 𝐴 ) +ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) = ( 𝐴 +ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) |
122 |
120 121
|
eqtri |
⊢ ( span ‘ ( 𝐴 ∪ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) = ( 𝐴 +ℋ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) |
123 |
111 118 122
|
3eqtr4i |
⊢ ( span ‘ ( 𝐴 ∪ { 𝐵 } ) ) = ( span ‘ ( 𝐴 ∪ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) |