Metamath Proof Explorer


Theorem spanval

Description: Value of the linear span of a subset of Hilbert space. The span is the intersection of all subspaces constraining the subset. Definition of span in Schechter p. 276. (Contributed by NM, 2-Jun-2004) (Revised by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)

Ref Expression
Assertion spanval ( 𝐴 ⊆ ℋ → ( span ‘ 𝐴 ) = { 𝑥S𝐴𝑥 } )

Proof

Step Hyp Ref Expression
1 df-span span = ( 𝑦 ∈ 𝒫 ℋ ↦ { 𝑥S𝑦𝑥 } )
2 sseq1 ( 𝑦 = 𝐴 → ( 𝑦𝑥𝐴𝑥 ) )
3 2 rabbidv ( 𝑦 = 𝐴 → { 𝑥S𝑦𝑥 } = { 𝑥S𝐴𝑥 } )
4 3 inteqd ( 𝑦 = 𝐴 { 𝑥S𝑦𝑥 } = { 𝑥S𝐴𝑥 } )
5 ax-hilex ℋ ∈ V
6 5 elpw2 ( 𝐴 ∈ 𝒫 ℋ ↔ 𝐴 ⊆ ℋ )
7 6 biimpri ( 𝐴 ⊆ ℋ → 𝐴 ∈ 𝒫 ℋ )
8 helsh ℋ ∈ S
9 sseq2 ( 𝑥 = ℋ → ( 𝐴𝑥𝐴 ⊆ ℋ ) )
10 9 rspcev ( ( ℋ ∈ S𝐴 ⊆ ℋ ) → ∃ 𝑥S 𝐴𝑥 )
11 8 10 mpan ( 𝐴 ⊆ ℋ → ∃ 𝑥S 𝐴𝑥 )
12 intexrab ( ∃ 𝑥S 𝐴𝑥 { 𝑥S𝐴𝑥 } ∈ V )
13 11 12 sylib ( 𝐴 ⊆ ℋ → { 𝑥S𝐴𝑥 } ∈ V )
14 1 4 7 13 fvmptd3 ( 𝐴 ⊆ ℋ → ( span ‘ 𝐴 ) = { 𝑥S𝐴𝑥 } )