| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-span | ⊢ span  =  ( 𝑦  ∈  𝒫   ℋ  ↦  ∩  { 𝑥  ∈   Sℋ   ∣  𝑦  ⊆  𝑥 } ) | 
						
							| 2 |  | sseq1 | ⊢ ( 𝑦  =  𝐴  →  ( 𝑦  ⊆  𝑥  ↔  𝐴  ⊆  𝑥 ) ) | 
						
							| 3 | 2 | rabbidv | ⊢ ( 𝑦  =  𝐴  →  { 𝑥  ∈   Sℋ   ∣  𝑦  ⊆  𝑥 }  =  { 𝑥  ∈   Sℋ   ∣  𝐴  ⊆  𝑥 } ) | 
						
							| 4 | 3 | inteqd | ⊢ ( 𝑦  =  𝐴  →  ∩  { 𝑥  ∈   Sℋ   ∣  𝑦  ⊆  𝑥 }  =  ∩  { 𝑥  ∈   Sℋ   ∣  𝐴  ⊆  𝑥 } ) | 
						
							| 5 |  | ax-hilex | ⊢  ℋ  ∈  V | 
						
							| 6 | 5 | elpw2 | ⊢ ( 𝐴  ∈  𝒫   ℋ  ↔  𝐴  ⊆   ℋ ) | 
						
							| 7 | 6 | biimpri | ⊢ ( 𝐴  ⊆   ℋ  →  𝐴  ∈  𝒫   ℋ ) | 
						
							| 8 |  | helsh | ⊢  ℋ  ∈   Sℋ | 
						
							| 9 |  | sseq2 | ⊢ ( 𝑥  =   ℋ  →  ( 𝐴  ⊆  𝑥  ↔  𝐴  ⊆   ℋ ) ) | 
						
							| 10 | 9 | rspcev | ⊢ ( (  ℋ  ∈   Sℋ   ∧  𝐴  ⊆   ℋ )  →  ∃ 𝑥  ∈   Sℋ  𝐴  ⊆  𝑥 ) | 
						
							| 11 | 8 10 | mpan | ⊢ ( 𝐴  ⊆   ℋ  →  ∃ 𝑥  ∈   Sℋ  𝐴  ⊆  𝑥 ) | 
						
							| 12 |  | intexrab | ⊢ ( ∃ 𝑥  ∈   Sℋ  𝐴  ⊆  𝑥  ↔  ∩  { 𝑥  ∈   Sℋ   ∣  𝐴  ⊆  𝑥 }  ∈  V ) | 
						
							| 13 | 11 12 | sylib | ⊢ ( 𝐴  ⊆   ℋ  →  ∩  { 𝑥  ∈   Sℋ   ∣  𝐴  ⊆  𝑥 }  ∈  V ) | 
						
							| 14 | 1 4 7 13 | fvmptd3 | ⊢ ( 𝐴  ⊆   ℋ  →  ( span ‘ 𝐴 )  =  ∩  { 𝑥  ∈   Sℋ   ∣  𝐴  ⊆  𝑥 } ) |