Step |
Hyp |
Ref |
Expression |
1 |
|
spc2ed.x |
⊢ Ⅎ 𝑥 𝜒 |
2 |
|
spc2ed.y |
⊢ Ⅎ 𝑦 𝜒 |
3 |
|
spc2ed.1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → ( 𝜓 ↔ 𝜒 ) ) |
4 |
|
2nalexn |
⊢ ( ¬ ∀ 𝑥 ∀ 𝑦 𝜓 ↔ ∃ 𝑥 ∃ 𝑦 ¬ 𝜓 ) |
5 |
4
|
con1bii |
⊢ ( ¬ ∃ 𝑥 ∃ 𝑦 ¬ 𝜓 ↔ ∀ 𝑥 ∀ 𝑦 𝜓 ) |
6 |
1
|
nfn |
⊢ Ⅎ 𝑥 ¬ 𝜒 |
7 |
2
|
nfn |
⊢ Ⅎ 𝑦 ¬ 𝜒 |
8 |
3
|
notbid |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → ( ¬ 𝜓 ↔ ¬ 𝜒 ) ) |
9 |
6 7 8
|
spc2ed |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ) → ( ¬ 𝜒 → ∃ 𝑥 ∃ 𝑦 ¬ 𝜓 ) ) |
10 |
9
|
con1d |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ) → ( ¬ ∃ 𝑥 ∃ 𝑦 ¬ 𝜓 → 𝜒 ) ) |
11 |
5 10
|
syl5bir |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ) → ( ∀ 𝑥 ∀ 𝑦 𝜓 → 𝜒 ) ) |