Metamath Proof Explorer


Theorem spc2d

Description: Specialization with 2 quantifiers, using implicit substitution. (Contributed by Thierry Arnoux, 23-Aug-2017)

Ref Expression
Hypotheses spc2ed.x 𝑥 𝜒
spc2ed.y 𝑦 𝜒
spc2ed.1 ( ( 𝜑 ∧ ( 𝑥 = 𝐴𝑦 = 𝐵 ) ) → ( 𝜓𝜒 ) )
Assertion spc2d ( ( 𝜑 ∧ ( 𝐴𝑉𝐵𝑊 ) ) → ( ∀ 𝑥𝑦 𝜓𝜒 ) )

Proof

Step Hyp Ref Expression
1 spc2ed.x 𝑥 𝜒
2 spc2ed.y 𝑦 𝜒
3 spc2ed.1 ( ( 𝜑 ∧ ( 𝑥 = 𝐴𝑦 = 𝐵 ) ) → ( 𝜓𝜒 ) )
4 2nalexn ( ¬ ∀ 𝑥𝑦 𝜓 ↔ ∃ 𝑥𝑦 ¬ 𝜓 )
5 4 con1bii ( ¬ ∃ 𝑥𝑦 ¬ 𝜓 ↔ ∀ 𝑥𝑦 𝜓 )
6 1 nfn 𝑥 ¬ 𝜒
7 2 nfn 𝑦 ¬ 𝜒
8 3 notbid ( ( 𝜑 ∧ ( 𝑥 = 𝐴𝑦 = 𝐵 ) ) → ( ¬ 𝜓 ↔ ¬ 𝜒 ) )
9 6 7 8 spc2ed ( ( 𝜑 ∧ ( 𝐴𝑉𝐵𝑊 ) ) → ( ¬ 𝜒 → ∃ 𝑥𝑦 ¬ 𝜓 ) )
10 9 con1d ( ( 𝜑 ∧ ( 𝐴𝑉𝐵𝑊 ) ) → ( ¬ ∃ 𝑥𝑦 ¬ 𝜓𝜒 ) )
11 5 10 syl5bir ( ( 𝜑 ∧ ( 𝐴𝑉𝐵𝑊 ) ) → ( ∀ 𝑥𝑦 𝜓𝜒 ) )