| Step |
Hyp |
Ref |
Expression |
| 1 |
|
spc2ed.x |
⊢ Ⅎ 𝑥 𝜒 |
| 2 |
|
spc2ed.y |
⊢ Ⅎ 𝑦 𝜒 |
| 3 |
|
spc2ed.1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → ( 𝜓 ↔ 𝜒 ) ) |
| 4 |
|
elisset |
⊢ ( 𝐴 ∈ 𝑉 → ∃ 𝑥 𝑥 = 𝐴 ) |
| 5 |
|
elisset |
⊢ ( 𝐵 ∈ 𝑊 → ∃ 𝑦 𝑦 = 𝐵 ) |
| 6 |
4 5
|
anim12i |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∃ 𝑥 𝑥 = 𝐴 ∧ ∃ 𝑦 𝑦 = 𝐵 ) ) |
| 7 |
|
exdistrv |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ↔ ( ∃ 𝑥 𝑥 = 𝐴 ∧ ∃ 𝑦 𝑦 = 𝐵 ) ) |
| 8 |
6 7
|
sylibr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) |
| 9 |
|
nfv |
⊢ Ⅎ 𝑥 𝜑 |
| 10 |
9 1
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝜒 ) |
| 11 |
|
nfv |
⊢ Ⅎ 𝑦 𝜑 |
| 12 |
11 2
|
nfan |
⊢ Ⅎ 𝑦 ( 𝜑 ∧ 𝜒 ) |
| 13 |
|
anass |
⊢ ( ( ( 𝜒 ∧ 𝜑 ) ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) ↔ ( 𝜒 ∧ ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) ) ) |
| 14 |
|
ancom |
⊢ ( ( 𝜒 ∧ 𝜑 ) ↔ ( 𝜑 ∧ 𝜒 ) ) |
| 15 |
14
|
anbi1i |
⊢ ( ( ( 𝜒 ∧ 𝜑 ) ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) ↔ ( ( 𝜑 ∧ 𝜒 ) ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) ) |
| 16 |
13 15
|
bitr3i |
⊢ ( ( 𝜒 ∧ ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) ) ↔ ( ( 𝜑 ∧ 𝜒 ) ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) ) |
| 17 |
3
|
biimparc |
⊢ ( ( 𝜒 ∧ ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) ) → 𝜓 ) |
| 18 |
16 17
|
sylbir |
⊢ ( ( ( 𝜑 ∧ 𝜒 ) ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → 𝜓 ) |
| 19 |
18
|
ex |
⊢ ( ( 𝜑 ∧ 𝜒 ) → ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → 𝜓 ) ) |
| 20 |
12 19
|
eximd |
⊢ ( ( 𝜑 ∧ 𝜒 ) → ( ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ∃ 𝑦 𝜓 ) ) |
| 21 |
10 20
|
eximd |
⊢ ( ( 𝜑 ∧ 𝜒 ) → ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ∃ 𝑥 ∃ 𝑦 𝜓 ) ) |
| 22 |
21
|
impancom |
⊢ ( ( 𝜑 ∧ ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → ( 𝜒 → ∃ 𝑥 ∃ 𝑦 𝜓 ) ) |
| 23 |
8 22
|
sylan2 |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ) → ( 𝜒 → ∃ 𝑥 ∃ 𝑦 𝜓 ) ) |