Metamath Proof Explorer


Theorem spc2egv

Description: Existential specialization with two quantifiers, using implicit substitution. (Contributed by NM, 3-Aug-1995)

Ref Expression
Hypothesis spc2egv.1 ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( 𝜑𝜓 ) )
Assertion spc2egv ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝜓 → ∃ 𝑥𝑦 𝜑 ) )

Proof

Step Hyp Ref Expression
1 spc2egv.1 ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( 𝜑𝜓 ) )
2 elisset ( 𝐴𝑉 → ∃ 𝑥 𝑥 = 𝐴 )
3 elisset ( 𝐵𝑊 → ∃ 𝑦 𝑦 = 𝐵 )
4 2 3 anim12i ( ( 𝐴𝑉𝐵𝑊 ) → ( ∃ 𝑥 𝑥 = 𝐴 ∧ ∃ 𝑦 𝑦 = 𝐵 ) )
5 exdistrv ( ∃ 𝑥𝑦 ( 𝑥 = 𝐴𝑦 = 𝐵 ) ↔ ( ∃ 𝑥 𝑥 = 𝐴 ∧ ∃ 𝑦 𝑦 = 𝐵 ) )
6 4 5 sylibr ( ( 𝐴𝑉𝐵𝑊 ) → ∃ 𝑥𝑦 ( 𝑥 = 𝐴𝑦 = 𝐵 ) )
7 1 biimprcd ( 𝜓 → ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → 𝜑 ) )
8 7 2eximdv ( 𝜓 → ( ∃ 𝑥𝑦 ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ∃ 𝑥𝑦 𝜑 ) )
9 6 8 syl5com ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝜓 → ∃ 𝑥𝑦 𝜑 ) )