Metamath Proof Explorer
Description: Existential specialization, using implicit substitution. (Contributed by NM, 3-Aug-1995)
|
|
Ref |
Expression |
|
Hypotheses |
spc2ev.1 |
⊢ 𝐴 ∈ V |
|
|
spc2ev.2 |
⊢ 𝐵 ∈ V |
|
|
spc2ev.3 |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝜑 ↔ 𝜓 ) ) |
|
Assertion |
spc2ev |
⊢ ( 𝜓 → ∃ 𝑥 ∃ 𝑦 𝜑 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
spc2ev.1 |
⊢ 𝐴 ∈ V |
2 |
|
spc2ev.2 |
⊢ 𝐵 ∈ V |
3 |
|
spc2ev.3 |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝜑 ↔ 𝜓 ) ) |
4 |
3
|
spc2egv |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝜓 → ∃ 𝑥 ∃ 𝑦 𝜑 ) ) |
5 |
1 2 4
|
mp2an |
⊢ ( 𝜓 → ∃ 𝑥 ∃ 𝑦 𝜑 ) |