Metamath Proof Explorer


Theorem spc2ev

Description: Existential specialization, using implicit substitution. (Contributed by NM, 3-Aug-1995)

Ref Expression
Hypotheses spc2ev.1 𝐴 ∈ V
spc2ev.2 𝐵 ∈ V
spc2ev.3 ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( 𝜑𝜓 ) )
Assertion spc2ev ( 𝜓 → ∃ 𝑥𝑦 𝜑 )

Proof

Step Hyp Ref Expression
1 spc2ev.1 𝐴 ∈ V
2 spc2ev.2 𝐵 ∈ V
3 spc2ev.3 ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( 𝜑𝜓 ) )
4 3 spc2egv ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝜓 → ∃ 𝑥𝑦 𝜑 ) )
5 1 2 4 mp2an ( 𝜓 → ∃ 𝑥𝑦 𝜑 )