Description: Specialization with two quantifiers, using implicit substitution. (Contributed by NM, 27-Apr-2004)
Ref | Expression | ||
---|---|---|---|
Hypothesis | spc2egv.1 | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝜑 ↔ 𝜓 ) ) | |
Assertion | spc2gv | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∀ 𝑥 ∀ 𝑦 𝜑 → 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spc2egv.1 | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝜑 ↔ 𝜓 ) ) | |
2 | 1 | notbid | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ¬ 𝜑 ↔ ¬ 𝜓 ) ) |
3 | 2 | spc2egv | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ¬ 𝜓 → ∃ 𝑥 ∃ 𝑦 ¬ 𝜑 ) ) |
4 | 2nalexn | ⊢ ( ¬ ∀ 𝑥 ∀ 𝑦 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 ¬ 𝜑 ) | |
5 | 3 4 | syl6ibr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ¬ 𝜓 → ¬ ∀ 𝑥 ∀ 𝑦 𝜑 ) ) |
6 | 5 | con4d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∀ 𝑥 ∀ 𝑦 𝜑 → 𝜓 ) ) |