Step |
Hyp |
Ref |
Expression |
1 |
|
spc3egv.1 |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) → ( 𝜑 ↔ 𝜓 ) ) |
2 |
|
elex |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ V ) |
3 |
|
elex |
⊢ ( 𝐵 ∈ 𝑊 → 𝐵 ∈ V ) |
4 |
|
elex |
⊢ ( 𝐶 ∈ 𝑋 → 𝐶 ∈ V ) |
5 |
|
simp1 |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V ) → 𝐴 ∈ V ) |
6 |
1
|
3coml |
⊢ ( ( 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝑥 = 𝐴 ) → ( 𝜑 ↔ 𝜓 ) ) |
7 |
6
|
3expa |
⊢ ( ( ( 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) ∧ 𝑥 = 𝐴 ) → ( 𝜑 ↔ 𝜓 ) ) |
8 |
7
|
pm5.74da |
⊢ ( ( 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) → ( ( 𝑥 = 𝐴 → 𝜑 ) ↔ ( 𝑥 = 𝐴 → 𝜓 ) ) ) |
9 |
8
|
spc2egv |
⊢ ( ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) → ( ( 𝑥 = 𝐴 → 𝜓 ) → ∃ 𝑦 ∃ 𝑧 ( 𝑥 = 𝐴 → 𝜑 ) ) ) |
10 |
|
19.37v |
⊢ ( ∃ 𝑧 ( 𝑥 = 𝐴 → 𝜑 ) ↔ ( 𝑥 = 𝐴 → ∃ 𝑧 𝜑 ) ) |
11 |
10
|
exbii |
⊢ ( ∃ 𝑦 ∃ 𝑧 ( 𝑥 = 𝐴 → 𝜑 ) ↔ ∃ 𝑦 ( 𝑥 = 𝐴 → ∃ 𝑧 𝜑 ) ) |
12 |
|
19.37v |
⊢ ( ∃ 𝑦 ( 𝑥 = 𝐴 → ∃ 𝑧 𝜑 ) ↔ ( 𝑥 = 𝐴 → ∃ 𝑦 ∃ 𝑧 𝜑 ) ) |
13 |
11 12
|
bitri |
⊢ ( ∃ 𝑦 ∃ 𝑧 ( 𝑥 = 𝐴 → 𝜑 ) ↔ ( 𝑥 = 𝐴 → ∃ 𝑦 ∃ 𝑧 𝜑 ) ) |
14 |
9 13
|
syl6ib |
⊢ ( ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) → ( ( 𝑥 = 𝐴 → 𝜓 ) → ( 𝑥 = 𝐴 → ∃ 𝑦 ∃ 𝑧 𝜑 ) ) ) |
15 |
14
|
pm2.86d |
⊢ ( ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) → ( 𝑥 = 𝐴 → ( 𝜓 → ∃ 𝑦 ∃ 𝑧 𝜑 ) ) ) |
16 |
15
|
3adant1 |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V ) → ( 𝑥 = 𝐴 → ( 𝜓 → ∃ 𝑦 ∃ 𝑧 𝜑 ) ) ) |
17 |
16
|
imp |
⊢ ( ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V ) ∧ 𝑥 = 𝐴 ) → ( 𝜓 → ∃ 𝑦 ∃ 𝑧 𝜑 ) ) |
18 |
5 17
|
spcimedv |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V ) → ( 𝜓 → ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 𝜑 ) ) |
19 |
2 3 4 18
|
syl3an |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 𝜓 → ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 𝜑 ) ) |