Metamath Proof Explorer


Theorem spc3egv

Description: Existential specialization with three quantifiers, using implicit substitution. (Contributed by NM, 12-May-2008) Avoid ax-10 and ax-11 . (Revised by Gino Giotto, 20-Aug-2023) (Proof shortened by Wolf Lammen, 25-Aug-2023)

Ref Expression
Hypothesis spc3egv.1 ( ( 𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶 ) → ( 𝜑𝜓 ) )
Assertion spc3egv ( ( 𝐴𝑉𝐵𝑊𝐶𝑋 ) → ( 𝜓 → ∃ 𝑥𝑦𝑧 𝜑 ) )

Proof

Step Hyp Ref Expression
1 spc3egv.1 ( ( 𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶 ) → ( 𝜑𝜓 ) )
2 elex ( 𝐴𝑉𝐴 ∈ V )
3 elex ( 𝐵𝑊𝐵 ∈ V )
4 elex ( 𝐶𝑋𝐶 ∈ V )
5 simp1 ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V ) → 𝐴 ∈ V )
6 1 3coml ( ( 𝑦 = 𝐵𝑧 = 𝐶𝑥 = 𝐴 ) → ( 𝜑𝜓 ) )
7 6 3expa ( ( ( 𝑦 = 𝐵𝑧 = 𝐶 ) ∧ 𝑥 = 𝐴 ) → ( 𝜑𝜓 ) )
8 7 pm5.74da ( ( 𝑦 = 𝐵𝑧 = 𝐶 ) → ( ( 𝑥 = 𝐴𝜑 ) ↔ ( 𝑥 = 𝐴𝜓 ) ) )
9 8 spc2egv ( ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) → ( ( 𝑥 = 𝐴𝜓 ) → ∃ 𝑦𝑧 ( 𝑥 = 𝐴𝜑 ) ) )
10 19.37v ( ∃ 𝑧 ( 𝑥 = 𝐴𝜑 ) ↔ ( 𝑥 = 𝐴 → ∃ 𝑧 𝜑 ) )
11 10 exbii ( ∃ 𝑦𝑧 ( 𝑥 = 𝐴𝜑 ) ↔ ∃ 𝑦 ( 𝑥 = 𝐴 → ∃ 𝑧 𝜑 ) )
12 19.37v ( ∃ 𝑦 ( 𝑥 = 𝐴 → ∃ 𝑧 𝜑 ) ↔ ( 𝑥 = 𝐴 → ∃ 𝑦𝑧 𝜑 ) )
13 11 12 bitri ( ∃ 𝑦𝑧 ( 𝑥 = 𝐴𝜑 ) ↔ ( 𝑥 = 𝐴 → ∃ 𝑦𝑧 𝜑 ) )
14 9 13 syl6ib ( ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) → ( ( 𝑥 = 𝐴𝜓 ) → ( 𝑥 = 𝐴 → ∃ 𝑦𝑧 𝜑 ) ) )
15 14 pm2.86d ( ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) → ( 𝑥 = 𝐴 → ( 𝜓 → ∃ 𝑦𝑧 𝜑 ) ) )
16 15 3adant1 ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V ) → ( 𝑥 = 𝐴 → ( 𝜓 → ∃ 𝑦𝑧 𝜑 ) ) )
17 16 imp ( ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V ) ∧ 𝑥 = 𝐴 ) → ( 𝜓 → ∃ 𝑦𝑧 𝜑 ) )
18 5 17 spcimedv ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V ) → ( 𝜓 → ∃ 𝑥𝑦𝑧 𝜑 ) )
19 2 3 4 18 syl3an ( ( 𝐴𝑉𝐵𝑊𝐶𝑋 ) → ( 𝜓 → ∃ 𝑥𝑦𝑧 𝜑 ) )