Step |
Hyp |
Ref |
Expression |
1 |
|
spc3egv.1 |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) → ( 𝜑 ↔ 𝜓 ) ) |
2 |
1
|
notbid |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) → ( ¬ 𝜑 ↔ ¬ 𝜓 ) ) |
3 |
2
|
spc3egv |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( ¬ 𝜓 → ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ¬ 𝜑 ) ) |
4 |
|
exnal |
⊢ ( ∃ 𝑧 ¬ 𝜑 ↔ ¬ ∀ 𝑧 𝜑 ) |
5 |
4
|
exbii |
⊢ ( ∃ 𝑦 ∃ 𝑧 ¬ 𝜑 ↔ ∃ 𝑦 ¬ ∀ 𝑧 𝜑 ) |
6 |
|
exnal |
⊢ ( ∃ 𝑦 ¬ ∀ 𝑧 𝜑 ↔ ¬ ∀ 𝑦 ∀ 𝑧 𝜑 ) |
7 |
5 6
|
bitri |
⊢ ( ∃ 𝑦 ∃ 𝑧 ¬ 𝜑 ↔ ¬ ∀ 𝑦 ∀ 𝑧 𝜑 ) |
8 |
7
|
exbii |
⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ¬ 𝜑 ↔ ∃ 𝑥 ¬ ∀ 𝑦 ∀ 𝑧 𝜑 ) |
9 |
|
exnal |
⊢ ( ∃ 𝑥 ¬ ∀ 𝑦 ∀ 𝑧 𝜑 ↔ ¬ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 𝜑 ) |
10 |
8 9
|
bitr2i |
⊢ ( ¬ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ¬ 𝜑 ) |
11 |
3 10
|
syl6ibr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( ¬ 𝜓 → ¬ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 𝜑 ) ) |
12 |
11
|
con4d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 𝜑 → 𝜓 ) ) |