Metamath Proof Explorer


Theorem spc3gv

Description: Specialization with three quantifiers, using implicit substitution. (Contributed by NM, 12-May-2008)

Ref Expression
Hypothesis spc3egv.1 ( ( 𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶 ) → ( 𝜑𝜓 ) )
Assertion spc3gv ( ( 𝐴𝑉𝐵𝑊𝐶𝑋 ) → ( ∀ 𝑥𝑦𝑧 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 spc3egv.1 ( ( 𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶 ) → ( 𝜑𝜓 ) )
2 1 notbid ( ( 𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶 ) → ( ¬ 𝜑 ↔ ¬ 𝜓 ) )
3 2 spc3egv ( ( 𝐴𝑉𝐵𝑊𝐶𝑋 ) → ( ¬ 𝜓 → ∃ 𝑥𝑦𝑧 ¬ 𝜑 ) )
4 exnal ( ∃ 𝑧 ¬ 𝜑 ↔ ¬ ∀ 𝑧 𝜑 )
5 4 exbii ( ∃ 𝑦𝑧 ¬ 𝜑 ↔ ∃ 𝑦 ¬ ∀ 𝑧 𝜑 )
6 exnal ( ∃ 𝑦 ¬ ∀ 𝑧 𝜑 ↔ ¬ ∀ 𝑦𝑧 𝜑 )
7 5 6 bitri ( ∃ 𝑦𝑧 ¬ 𝜑 ↔ ¬ ∀ 𝑦𝑧 𝜑 )
8 7 exbii ( ∃ 𝑥𝑦𝑧 ¬ 𝜑 ↔ ∃ 𝑥 ¬ ∀ 𝑦𝑧 𝜑 )
9 exnal ( ∃ 𝑥 ¬ ∀ 𝑦𝑧 𝜑 ↔ ¬ ∀ 𝑥𝑦𝑧 𝜑 )
10 8 9 bitr2i ( ¬ ∀ 𝑥𝑦𝑧 𝜑 ↔ ∃ 𝑥𝑦𝑧 ¬ 𝜑 )
11 3 10 syl6ibr ( ( 𝐴𝑉𝐵𝑊𝐶𝑋 ) → ( ¬ 𝜓 → ¬ ∀ 𝑥𝑦𝑧 𝜑 ) )
12 11 con4d ( ( 𝐴𝑉𝐵𝑊𝐶𝑋 ) → ( ∀ 𝑥𝑦𝑧 𝜑𝜓 ) )