Metamath Proof Explorer
Description: Existential specialization, using implicit substitution, deduction
version. (Contributed by RP, 12-Aug-2020) (Revised by AV, 16-Aug-2024)
|
|
Ref |
Expression |
|
Hypotheses |
spcedv.1 |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
|
|
spcedv.2 |
⊢ ( 𝜑 → 𝜒 ) |
|
|
spcedv.3 |
⊢ ( 𝑥 = 𝑋 → ( 𝜓 ↔ 𝜒 ) ) |
|
Assertion |
spcedv |
⊢ ( 𝜑 → ∃ 𝑥 𝜓 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
spcedv.1 |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
2 |
|
spcedv.2 |
⊢ ( 𝜑 → 𝜒 ) |
3 |
|
spcedv.3 |
⊢ ( 𝑥 = 𝑋 → ( 𝜓 ↔ 𝜒 ) ) |
4 |
3
|
spcegv |
⊢ ( 𝑋 ∈ 𝑉 → ( 𝜒 → ∃ 𝑥 𝜓 ) ) |
5 |
1 2 4
|
sylc |
⊢ ( 𝜑 → ∃ 𝑥 𝜓 ) |