Description: Existential specialization, using implicit substitution. (Contributed by NM, 2-Feb-1997)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | spcgf.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| spcgf.2 | ⊢ Ⅎ 𝑥 𝜓 | ||
| spcgf.3 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | spcegf | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝜓 → ∃ 𝑥 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spcgf.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| 2 | spcgf.2 | ⊢ Ⅎ 𝑥 𝜓 | |
| 3 | spcgf.3 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 4 | 2 | nfn | ⊢ Ⅎ 𝑥 ¬ 𝜓 |
| 5 | 3 | notbid | ⊢ ( 𝑥 = 𝐴 → ( ¬ 𝜑 ↔ ¬ 𝜓 ) ) |
| 6 | 1 4 5 | spcgf | ⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 ¬ 𝜑 → ¬ 𝜓 ) ) |
| 7 | 6 | con2d | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝜓 → ¬ ∀ 𝑥 ¬ 𝜑 ) ) |
| 8 | df-ex | ⊢ ( ∃ 𝑥 𝜑 ↔ ¬ ∀ 𝑥 ¬ 𝜑 ) | |
| 9 | 7 8 | imbitrrdi | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝜓 → ∃ 𝑥 𝜑 ) ) |