Metamath Proof Explorer
Description: Existential specialization, using implicit substitution. (Contributed by NM, 31-Dec-1993) (Proof shortened by Eric Schmidt, 22-Dec-2006)
|
|
Ref |
Expression |
|
Hypotheses |
spcv.1 |
⊢ 𝐴 ∈ V |
|
|
spcv.2 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
|
Assertion |
spcev |
⊢ ( 𝜓 → ∃ 𝑥 𝜑 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
spcv.1 |
⊢ 𝐴 ∈ V |
| 2 |
|
spcv.2 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
| 3 |
2
|
spcegv |
⊢ ( 𝐴 ∈ V → ( 𝜓 → ∃ 𝑥 𝜑 ) ) |
| 4 |
1 3
|
ax-mp |
⊢ ( 𝜓 → ∃ 𝑥 𝜑 ) |