Description: A closed version of spcgf . (Contributed by Andrew Salmon, 6-Jun-2011) (Revised by Mario Carneiro, 4-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | spcimgfi1.1 | ⊢ Ⅎ 𝑥 𝜓 | |
| spcimgfi1.2 | ⊢ Ⅎ 𝑥 𝐴 | ||
| Assertion | spcgft | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) → ( 𝐴 ∈ 𝐵 → ( ∀ 𝑥 𝜑 → 𝜓 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spcimgfi1.1 | ⊢ Ⅎ 𝑥 𝜓 | |
| 2 | spcimgfi1.2 | ⊢ Ⅎ 𝑥 𝐴 | |
| 3 | biimp | ⊢ ( ( 𝜑 ↔ 𝜓 ) → ( 𝜑 → 𝜓 ) ) | |
| 4 | 3 | imim2i | ⊢ ( ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) → ( 𝑥 = 𝐴 → ( 𝜑 → 𝜓 ) ) ) |
| 5 | 4 | alimi | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) → ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 → 𝜓 ) ) ) |
| 6 | 1 2 | spcimgfi1 | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 → 𝜓 ) ) → ( 𝐴 ∈ 𝐵 → ( ∀ 𝑥 𝜑 → 𝜓 ) ) ) |
| 7 | 5 6 | syl | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) → ( 𝐴 ∈ 𝐵 → ( ∀ 𝑥 𝜑 → 𝜓 ) ) ) |