Description: A closed version of spcgf . (Contributed by Andrew Salmon, 6-Jun-2011) (Revised by Mario Carneiro, 4-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | spcimgft.1 | ⊢ Ⅎ 𝑥 𝜓 | |
spcimgft.2 | ⊢ Ⅎ 𝑥 𝐴 | ||
Assertion | spcgft | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) → ( 𝐴 ∈ 𝐵 → ( ∀ 𝑥 𝜑 → 𝜓 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spcimgft.1 | ⊢ Ⅎ 𝑥 𝜓 | |
2 | spcimgft.2 | ⊢ Ⅎ 𝑥 𝐴 | |
3 | biimp | ⊢ ( ( 𝜑 ↔ 𝜓 ) → ( 𝜑 → 𝜓 ) ) | |
4 | 3 | imim2i | ⊢ ( ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) → ( 𝑥 = 𝐴 → ( 𝜑 → 𝜓 ) ) ) |
5 | 4 | alimi | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) → ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 → 𝜓 ) ) ) |
6 | 1 2 | spcimgft | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 → 𝜓 ) ) → ( 𝐴 ∈ 𝐵 → ( ∀ 𝑥 𝜑 → 𝜓 ) ) ) |
7 | 5 6 | syl | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) → ( 𝐴 ∈ 𝐵 → ( ∀ 𝑥 𝜑 → 𝜓 ) ) ) |