Metamath Proof Explorer


Theorem spcgv

Description: Rule of specialization, using implicit substitution. Compare Theorem 7.3 of Quine p. 44. (Contributed by NM, 22-Jun-1994) Avoid ax-10 , ax-11 . (Revised by Wolf Lammen, 25-Aug-2023)

Ref Expression
Hypothesis spcgv.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
Assertion spcgv ( 𝐴𝑉 → ( ∀ 𝑥 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 spcgv.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
2 elex ( 𝐴𝑉𝐴 ∈ V )
3 id ( 𝐴 ∈ V → 𝐴 ∈ V )
4 1 adantl ( ( 𝐴 ∈ V ∧ 𝑥 = 𝐴 ) → ( 𝜑𝜓 ) )
5 3 4 spcdv ( 𝐴 ∈ V → ( ∀ 𝑥 𝜑𝜓 ) )
6 2 5 syl ( 𝐴𝑉 → ( ∀ 𝑥 𝜑𝜓 ) )