Metamath Proof Explorer


Theorem spcimdv

Description: Restricted specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017) Avoid ax-10 and ax-11 . (Revised by Gino Giotto, 20-Aug-2023)

Ref Expression
Hypotheses spcimdv.1 ( 𝜑𝐴𝐵 )
spcimdv.2 ( ( 𝜑𝑥 = 𝐴 ) → ( 𝜓𝜒 ) )
Assertion spcimdv ( 𝜑 → ( ∀ 𝑥 𝜓𝜒 ) )

Proof

Step Hyp Ref Expression
1 spcimdv.1 ( 𝜑𝐴𝐵 )
2 spcimdv.2 ( ( 𝜑𝑥 = 𝐴 ) → ( 𝜓𝜒 ) )
3 elisset ( 𝐴𝐵 → ∃ 𝑥 𝑥 = 𝐴 )
4 1 3 syl ( 𝜑 → ∃ 𝑥 𝑥 = 𝐴 )
5 2 ex ( 𝜑 → ( 𝑥 = 𝐴 → ( 𝜓𝜒 ) ) )
6 5 eximdv ( 𝜑 → ( ∃ 𝑥 𝑥 = 𝐴 → ∃ 𝑥 ( 𝜓𝜒 ) ) )
7 4 6 mpd ( 𝜑 → ∃ 𝑥 ( 𝜓𝜒 ) )
8 19.36v ( ∃ 𝑥 ( 𝜓𝜒 ) ↔ ( ∀ 𝑥 𝜓𝜒 ) )
9 7 8 sylib ( 𝜑 → ( ∀ 𝑥 𝜓𝜒 ) )