Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The universal class
spcimdv
Metamath Proof Explorer
Description: Restricted specialization, using implicit substitution. (Contributed by Mario Carneiro , 4-Jan-2017) Avoid ax-10 and ax-11 . (Revised by Gino Giotto , 20-Aug-2023)
Ref
Expression
Hypotheses
spcimdv.1
⊢ ( 𝜑 → 𝐴 ∈ 𝐵 )
spcimdv.2
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝜓 → 𝜒 ) )
Assertion
spcimdv
⊢ ( 𝜑 → ( ∀ 𝑥 𝜓 → 𝜒 ) )
Proof
Step
Hyp
Ref
Expression
1
spcimdv.1
⊢ ( 𝜑 → 𝐴 ∈ 𝐵 )
2
spcimdv.2
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝜓 → 𝜒 ) )
3
elisset
⊢ ( 𝐴 ∈ 𝐵 → ∃ 𝑥 𝑥 = 𝐴 )
4
1 3
syl
⊢ ( 𝜑 → ∃ 𝑥 𝑥 = 𝐴 )
5
2
ex
⊢ ( 𝜑 → ( 𝑥 = 𝐴 → ( 𝜓 → 𝜒 ) ) )
6
5
eximdv
⊢ ( 𝜑 → ( ∃ 𝑥 𝑥 = 𝐴 → ∃ 𝑥 ( 𝜓 → 𝜒 ) ) )
7
4 6
mpd
⊢ ( 𝜑 → ∃ 𝑥 ( 𝜓 → 𝜒 ) )
8
19.36v
⊢ ( ∃ 𝑥 ( 𝜓 → 𝜒 ) ↔ ( ∀ 𝑥 𝜓 → 𝜒 ) )
9
7 8
sylib
⊢ ( 𝜑 → ( ∀ 𝑥 𝜓 → 𝜒 ) )