Metamath Proof Explorer


Theorem spcimegf

Description: Existential specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses spcimgf.1 𝑥 𝐴
spcimgf.2 𝑥 𝜓
spcimegf.3 ( 𝑥 = 𝐴 → ( 𝜓𝜑 ) )
Assertion spcimegf ( 𝐴𝑉 → ( 𝜓 → ∃ 𝑥 𝜑 ) )

Proof

Step Hyp Ref Expression
1 spcimgf.1 𝑥 𝐴
2 spcimgf.2 𝑥 𝜓
3 spcimegf.3 ( 𝑥 = 𝐴 → ( 𝜓𝜑 ) )
4 2 nfn 𝑥 ¬ 𝜓
5 3 con3d ( 𝑥 = 𝐴 → ( ¬ 𝜑 → ¬ 𝜓 ) )
6 1 4 5 spcimgf ( 𝐴𝑉 → ( ∀ 𝑥 ¬ 𝜑 → ¬ 𝜓 ) )
7 6 con2d ( 𝐴𝑉 → ( 𝜓 → ¬ ∀ 𝑥 ¬ 𝜑 ) )
8 df-ex ( ∃ 𝑥 𝜑 ↔ ¬ ∀ 𝑥 ¬ 𝜑 )
9 7 8 syl6ibr ( 𝐴𝑉 → ( 𝜓 → ∃ 𝑥 𝜑 ) )