Metamath Proof Explorer


Theorem spcimgf

Description: Rule of specialization, using implicit substitution. Compare Theorem 7.3 of Quine p. 44. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses spcimgf.1 𝑥 𝐴
spcimgf.2 𝑥 𝜓
spcimgf.3 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
Assertion spcimgf ( 𝐴𝑉 → ( ∀ 𝑥 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 spcimgf.1 𝑥 𝐴
2 spcimgf.2 𝑥 𝜓
3 spcimgf.3 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
4 2 1 spcimgft ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) ) → ( 𝐴𝑉 → ( ∀ 𝑥 𝜑𝜓 ) ) )
5 4 3 mpg ( 𝐴𝑉 → ( ∀ 𝑥 𝜑𝜓 ) )