Metamath Proof Explorer
Description: Rule of specialization, using implicit substitution. Compare Theorem
7.3 of Quine p. 44. (Contributed by Mario Carneiro, 4-Jan-2017)
|
|
Ref |
Expression |
|
Hypotheses |
spcimgf.1 |
⊢ Ⅎ 𝑥 𝐴 |
|
|
spcimgf.2 |
⊢ Ⅎ 𝑥 𝜓 |
|
|
spcimgf.3 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 → 𝜓 ) ) |
|
Assertion |
spcimgf |
⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 𝜑 → 𝜓 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
spcimgf.1 |
⊢ Ⅎ 𝑥 𝐴 |
2 |
|
spcimgf.2 |
⊢ Ⅎ 𝑥 𝜓 |
3 |
|
spcimgf.3 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 → 𝜓 ) ) |
4 |
2 1
|
spcimgft |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 → 𝜓 ) ) → ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 𝜑 → 𝜓 ) ) ) |
5 |
4 3
|
mpg |
⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 𝜑 → 𝜓 ) ) |