Metamath Proof Explorer


Theorem spcimgft

Description: A closed version of spcimgf . (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses spcimgft.1 𝑥 𝜓
spcimgft.2 𝑥 𝐴
Assertion spcimgft ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) ) → ( 𝐴𝐵 → ( ∀ 𝑥 𝜑𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 spcimgft.1 𝑥 𝜓
2 spcimgft.2 𝑥 𝐴
3 elex ( 𝐴𝐵𝐴 ∈ V )
4 2 issetf ( 𝐴 ∈ V ↔ ∃ 𝑥 𝑥 = 𝐴 )
5 exim ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) ) → ( ∃ 𝑥 𝑥 = 𝐴 → ∃ 𝑥 ( 𝜑𝜓 ) ) )
6 4 5 syl5bi ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) ) → ( 𝐴 ∈ V → ∃ 𝑥 ( 𝜑𝜓 ) ) )
7 1 19.36 ( ∃ 𝑥 ( 𝜑𝜓 ) ↔ ( ∀ 𝑥 𝜑𝜓 ) )
8 6 7 syl6ib ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) ) → ( 𝐴 ∈ V → ( ∀ 𝑥 𝜑𝜓 ) ) )
9 3 8 syl5 ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) ) → ( 𝐴𝐵 → ( ∀ 𝑥 𝜑𝜓 ) ) )