Description: A closed version of spcimgf . (Contributed by Mario Carneiro, 4-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | spcimgft.1 | ⊢ Ⅎ 𝑥 𝜓 | |
spcimgft.2 | ⊢ Ⅎ 𝑥 𝐴 | ||
Assertion | spcimgft | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 → 𝜓 ) ) → ( 𝐴 ∈ 𝐵 → ( ∀ 𝑥 𝜑 → 𝜓 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spcimgft.1 | ⊢ Ⅎ 𝑥 𝜓 | |
2 | spcimgft.2 | ⊢ Ⅎ 𝑥 𝐴 | |
3 | elex | ⊢ ( 𝐴 ∈ 𝐵 → 𝐴 ∈ V ) | |
4 | 2 | issetf | ⊢ ( 𝐴 ∈ V ↔ ∃ 𝑥 𝑥 = 𝐴 ) |
5 | exim | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 → 𝜓 ) ) → ( ∃ 𝑥 𝑥 = 𝐴 → ∃ 𝑥 ( 𝜑 → 𝜓 ) ) ) | |
6 | 4 5 | syl5bi | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 → 𝜓 ) ) → ( 𝐴 ∈ V → ∃ 𝑥 ( 𝜑 → 𝜓 ) ) ) |
7 | 1 | 19.36 | ⊢ ( ∃ 𝑥 ( 𝜑 → 𝜓 ) ↔ ( ∀ 𝑥 𝜑 → 𝜓 ) ) |
8 | 6 7 | syl6ib | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 → 𝜓 ) ) → ( 𝐴 ∈ V → ( ∀ 𝑥 𝜑 → 𝜓 ) ) ) |
9 | 3 8 | syl5 | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 → 𝜓 ) ) → ( 𝐴 ∈ 𝐵 → ( ∀ 𝑥 𝜑 → 𝜓 ) ) ) |