Metamath Proof Explorer


Theorem spcv

Description: Rule of specialization, using implicit substitution. (Contributed by NM, 22-Jun-1994)

Ref Expression
Hypotheses spcv.1 𝐴 ∈ V
spcv.2 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
Assertion spcv ( ∀ 𝑥 𝜑𝜓 )

Proof

Step Hyp Ref Expression
1 spcv.1 𝐴 ∈ V
2 spcv.2 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
3 2 spcgv ( 𝐴 ∈ V → ( ∀ 𝑥 𝜑𝜓 ) )
4 1 3 ax-mp ( ∀ 𝑥 𝜑𝜓 )