Metamath Proof Explorer


Theorem speccl

Description: The spectrum of an operator is a set of complex numbers. (Contributed by NM, 11-Apr-2006) (New usage is discouraged.)

Ref Expression
Assertion speccl ( 𝑇 : ℋ ⟶ ℋ → ( Lambda ‘ 𝑇 ) ⊆ ℂ )

Proof

Step Hyp Ref Expression
1 specval ( 𝑇 : ℋ ⟶ ℋ → ( Lambda ‘ 𝑇 ) = { 𝑥 ∈ ℂ ∣ ¬ ( 𝑇op ( 𝑥 ·op ( I ↾ ℋ ) ) ) : ℋ –1-1→ ℋ } )
2 ssrab2 { 𝑥 ∈ ℂ ∣ ¬ ( 𝑇op ( 𝑥 ·op ( I ↾ ℋ ) ) ) : ℋ –1-1→ ℋ } ⊆ ℂ
3 1 2 eqsstrdi ( 𝑇 : ℋ ⟶ ℋ → ( Lambda ‘ 𝑇 ) ⊆ ℂ )