| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnex | ⊢ ℂ  ∈  V | 
						
							| 2 | 1 | rabex | ⊢ { 𝑥  ∈  ℂ  ∣  ¬  ( 𝑇  −op  ( 𝑥  ·op  (  I   ↾   ℋ ) ) ) :  ℋ –1-1→  ℋ }  ∈  V | 
						
							| 3 |  | ax-hilex | ⊢  ℋ  ∈  V | 
						
							| 4 |  | oveq1 | ⊢ ( 𝑡  =  𝑇  →  ( 𝑡  −op  ( 𝑥  ·op  (  I   ↾   ℋ ) ) )  =  ( 𝑇  −op  ( 𝑥  ·op  (  I   ↾   ℋ ) ) ) ) | 
						
							| 5 |  | f1eq1 | ⊢ ( ( 𝑡  −op  ( 𝑥  ·op  (  I   ↾   ℋ ) ) )  =  ( 𝑇  −op  ( 𝑥  ·op  (  I   ↾   ℋ ) ) )  →  ( ( 𝑡  −op  ( 𝑥  ·op  (  I   ↾   ℋ ) ) ) :  ℋ –1-1→  ℋ  ↔  ( 𝑇  −op  ( 𝑥  ·op  (  I   ↾   ℋ ) ) ) :  ℋ –1-1→  ℋ ) ) | 
						
							| 6 | 4 5 | syl | ⊢ ( 𝑡  =  𝑇  →  ( ( 𝑡  −op  ( 𝑥  ·op  (  I   ↾   ℋ ) ) ) :  ℋ –1-1→  ℋ  ↔  ( 𝑇  −op  ( 𝑥  ·op  (  I   ↾   ℋ ) ) ) :  ℋ –1-1→  ℋ ) ) | 
						
							| 7 | 6 | notbid | ⊢ ( 𝑡  =  𝑇  →  ( ¬  ( 𝑡  −op  ( 𝑥  ·op  (  I   ↾   ℋ ) ) ) :  ℋ –1-1→  ℋ  ↔  ¬  ( 𝑇  −op  ( 𝑥  ·op  (  I   ↾   ℋ ) ) ) :  ℋ –1-1→  ℋ ) ) | 
						
							| 8 | 7 | rabbidv | ⊢ ( 𝑡  =  𝑇  →  { 𝑥  ∈  ℂ  ∣  ¬  ( 𝑡  −op  ( 𝑥  ·op  (  I   ↾   ℋ ) ) ) :  ℋ –1-1→  ℋ }  =  { 𝑥  ∈  ℂ  ∣  ¬  ( 𝑇  −op  ( 𝑥  ·op  (  I   ↾   ℋ ) ) ) :  ℋ –1-1→  ℋ } ) | 
						
							| 9 |  | df-spec | ⊢ Lambda  =  ( 𝑡  ∈  (  ℋ  ↑m   ℋ )  ↦  { 𝑥  ∈  ℂ  ∣  ¬  ( 𝑡  −op  ( 𝑥  ·op  (  I   ↾   ℋ ) ) ) :  ℋ –1-1→  ℋ } ) | 
						
							| 10 | 2 3 3 8 9 | fvmptmap | ⊢ ( 𝑇 :  ℋ ⟶  ℋ  →  ( Lambda ‘ 𝑇 )  =  { 𝑥  ∈  ℂ  ∣  ¬  ( 𝑇  −op  ( 𝑥  ·op  (  I   ↾   ℋ ) ) ) :  ℋ –1-1→  ℋ } ) |