Step |
Hyp |
Ref |
Expression |
1 |
|
cnex |
⊢ ℂ ∈ V |
2 |
1
|
rabex |
⊢ { 𝑥 ∈ ℂ ∣ ¬ ( 𝑇 −op ( 𝑥 ·op ( I ↾ ℋ ) ) ) : ℋ –1-1→ ℋ } ∈ V |
3 |
|
ax-hilex |
⊢ ℋ ∈ V |
4 |
|
oveq1 |
⊢ ( 𝑡 = 𝑇 → ( 𝑡 −op ( 𝑥 ·op ( I ↾ ℋ ) ) ) = ( 𝑇 −op ( 𝑥 ·op ( I ↾ ℋ ) ) ) ) |
5 |
|
f1eq1 |
⊢ ( ( 𝑡 −op ( 𝑥 ·op ( I ↾ ℋ ) ) ) = ( 𝑇 −op ( 𝑥 ·op ( I ↾ ℋ ) ) ) → ( ( 𝑡 −op ( 𝑥 ·op ( I ↾ ℋ ) ) ) : ℋ –1-1→ ℋ ↔ ( 𝑇 −op ( 𝑥 ·op ( I ↾ ℋ ) ) ) : ℋ –1-1→ ℋ ) ) |
6 |
4 5
|
syl |
⊢ ( 𝑡 = 𝑇 → ( ( 𝑡 −op ( 𝑥 ·op ( I ↾ ℋ ) ) ) : ℋ –1-1→ ℋ ↔ ( 𝑇 −op ( 𝑥 ·op ( I ↾ ℋ ) ) ) : ℋ –1-1→ ℋ ) ) |
7 |
6
|
notbid |
⊢ ( 𝑡 = 𝑇 → ( ¬ ( 𝑡 −op ( 𝑥 ·op ( I ↾ ℋ ) ) ) : ℋ –1-1→ ℋ ↔ ¬ ( 𝑇 −op ( 𝑥 ·op ( I ↾ ℋ ) ) ) : ℋ –1-1→ ℋ ) ) |
8 |
7
|
rabbidv |
⊢ ( 𝑡 = 𝑇 → { 𝑥 ∈ ℂ ∣ ¬ ( 𝑡 −op ( 𝑥 ·op ( I ↾ ℋ ) ) ) : ℋ –1-1→ ℋ } = { 𝑥 ∈ ℂ ∣ ¬ ( 𝑇 −op ( 𝑥 ·op ( I ↾ ℋ ) ) ) : ℋ –1-1→ ℋ } ) |
9 |
|
df-spec |
⊢ Lambda = ( 𝑡 ∈ ( ℋ ↑m ℋ ) ↦ { 𝑥 ∈ ℂ ∣ ¬ ( 𝑡 −op ( 𝑥 ·op ( I ↾ ℋ ) ) ) : ℋ –1-1→ ℋ } ) |
10 |
2 3 3 8 9
|
fvmptmap |
⊢ ( 𝑇 : ℋ ⟶ ℋ → ( Lambda ‘ 𝑇 ) = { 𝑥 ∈ ℂ ∣ ¬ ( 𝑇 −op ( 𝑥 ·op ( I ↾ ℋ ) ) ) : ℋ –1-1→ ℋ } ) |