Description: Existence form of spsbc . (Contributed by Mario Carneiro, 18-Nov-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | spesbc | ⊢ ( [ 𝐴 / 𝑥 ] 𝜑 → ∃ 𝑥 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcex | ⊢ ( [ 𝐴 / 𝑥 ] 𝜑 → 𝐴 ∈ V ) | |
| 2 | rspesbca | ⊢ ( ( 𝐴 ∈ V ∧ [ 𝐴 / 𝑥 ] 𝜑 ) → ∃ 𝑥 ∈ V 𝜑 ) | |
| 3 | 1 2 | mpancom | ⊢ ( [ 𝐴 / 𝑥 ] 𝜑 → ∃ 𝑥 ∈ V 𝜑 ) |
| 4 | rexv | ⊢ ( ∃ 𝑥 ∈ V 𝜑 ↔ ∃ 𝑥 𝜑 ) | |
| 5 | 3 4 | sylib | ⊢ ( [ 𝐴 / 𝑥 ] 𝜑 → ∃ 𝑥 𝜑 ) |