Description: form of spsbc . (Contributed by Mario Carneiro, 9-Feb-2017)
Ref | Expression | ||
---|---|---|---|
Hypothesis | spesbcd.1 | ⊢ ( 𝜑 → [ 𝐴 / 𝑥 ] 𝜓 ) | |
Assertion | spesbcd | ⊢ ( 𝜑 → ∃ 𝑥 𝜓 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spesbcd.1 | ⊢ ( 𝜑 → [ 𝐴 / 𝑥 ] 𝜓 ) | |
2 | spesbc | ⊢ ( [ 𝐴 / 𝑥 ] 𝜓 → ∃ 𝑥 𝜓 ) | |
3 | 1 2 | syl | ⊢ ( 𝜑 → ∃ 𝑥 𝜓 ) |