Description: form of spsbc . (Contributed by Mario Carneiro, 9-Feb-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | spesbcd.1 | ⊢ ( 𝜑 → [ 𝐴 / 𝑥 ] 𝜓 ) | |
| Assertion | spesbcd | ⊢ ( 𝜑 → ∃ 𝑥 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spesbcd.1 | ⊢ ( 𝜑 → [ 𝐴 / 𝑥 ] 𝜓 ) | |
| 2 | spesbc | ⊢ ( [ 𝐴 / 𝑥 ] 𝜓 → ∃ 𝑥 𝜓 ) | |
| 3 | 1 2 | syl | ⊢ ( 𝜑 → ∃ 𝑥 𝜓 ) |