Metamath Proof Explorer


Theorem spesbcd

Description: form of spsbc . (Contributed by Mario Carneiro, 9-Feb-2017)

Ref Expression
Hypothesis spesbcd.1 ( 𝜑[ 𝐴 / 𝑥 ] 𝜓 )
Assertion spesbcd ( 𝜑 → ∃ 𝑥 𝜓 )

Proof

Step Hyp Ref Expression
1 spesbcd.1 ( 𝜑[ 𝐴 / 𝑥 ] 𝜓 )
2 spesbc ( [ 𝐴 / 𝑥 ] 𝜓 → ∃ 𝑥 𝜓 )
3 1 2 syl ( 𝜑 → ∃ 𝑥 𝜓 )