Metamath Proof Explorer


Theorem spfw

Description: Weak version of sp . Uses only Tarski's FOL axiom schemes. Lemma 9 of KalishMontague p. 87. This may be the best we can do with minimal distinct variable conditions. (Contributed by NM, 19-Apr-2017) (Proof shortened by Wolf Lammen, 10-Oct-2021)

Ref Expression
Hypotheses spfw.1 ( ¬ 𝜓 → ∀ 𝑥 ¬ 𝜓 )
spfw.2 ( ∀ 𝑥 𝜑 → ∀ 𝑦𝑥 𝜑 )
spfw.3 ( ¬ 𝜑 → ∀ 𝑦 ¬ 𝜑 )
spfw.4 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
Assertion spfw ( ∀ 𝑥 𝜑𝜑 )

Proof

Step Hyp Ref Expression
1 spfw.1 ( ¬ 𝜓 → ∀ 𝑥 ¬ 𝜓 )
2 spfw.2 ( ∀ 𝑥 𝜑 → ∀ 𝑦𝑥 𝜑 )
3 spfw.3 ( ¬ 𝜑 → ∀ 𝑦 ¬ 𝜑 )
4 spfw.4 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
5 4 biimpd ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
6 2 1 5 cbvaliw ( ∀ 𝑥 𝜑 → ∀ 𝑦 𝜓 )
7 4 biimprd ( 𝑥 = 𝑦 → ( 𝜓𝜑 ) )
8 7 equcoms ( 𝑦 = 𝑥 → ( 𝜓𝜑 ) )
9 3 8 spimw ( ∀ 𝑦 𝜓𝜑 )
10 6 9 syl ( ∀ 𝑥 𝜑𝜑 )