Metamath Proof Explorer


Theorem spimew

Description: Existential introduction, using implicit substitution. Compare Lemma 14 of Tarski p. 70. (Contributed by NM, 7-Aug-1994) (Proof shortened by Wolf Lammen, 22-Oct-2023)

Ref Expression
Hypotheses spimew.1 ( 𝜑 → ∀ 𝑥 𝜑 )
spimew.2 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
Assertion spimew ( 𝜑 → ∃ 𝑥 𝜓 )

Proof

Step Hyp Ref Expression
1 spimew.1 ( 𝜑 → ∀ 𝑥 𝜑 )
2 spimew.2 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
3 ax6v ¬ ∀ 𝑥 ¬ 𝑥 = 𝑦
4 2 speimfw ( ¬ ∀ 𝑥 ¬ 𝑥 = 𝑦 → ( ∀ 𝑥 𝜑 → ∃ 𝑥 𝜓 ) )
5 3 1 4 mpsyl ( 𝜑 → ∃ 𝑥 𝜓 )