Metamath Proof Explorer


Theorem spimw

Description: Specialization. Lemma 8 of KalishMontague p. 87. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 19-Apr-2017) (Proof shortened by Wolf Lammen, 7-Aug-2017)

Ref Expression
Hypotheses spimw.1 ( ¬ 𝜓 → ∀ 𝑥 ¬ 𝜓 )
spimw.2 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
Assertion spimw ( ∀ 𝑥 𝜑𝜓 )

Proof

Step Hyp Ref Expression
1 spimw.1 ( ¬ 𝜓 → ∀ 𝑥 ¬ 𝜓 )
2 spimw.2 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
3 ax6v ¬ ∀ 𝑥 ¬ 𝑥 = 𝑦
4 1 2 spimfw ( ¬ ∀ 𝑥 ¬ 𝑥 = 𝑦 → ( ∀ 𝑥 𝜑𝜓 ) )
5 3 4 ax-mp ( ∀ 𝑥 𝜑𝜓 )