| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							spr0nelg | 
							⊢ ∅  ∉  { 𝑝  ∣  ∃ 𝑎 ∃ 𝑏 𝑝  =  { 𝑎 ,  𝑏 } }  | 
						
						
							| 2 | 
							
								
							 | 
							sprssspr | 
							⊢ ( Pairs ‘ 𝑉 )  ⊆  { 𝑝  ∣  ∃ 𝑎 ∃ 𝑏 𝑝  =  { 𝑎 ,  𝑏 } }  | 
						
						
							| 3 | 
							
								2
							 | 
							sseli | 
							⊢ ( ∅  ∈  ( Pairs ‘ 𝑉 )  →  ∅  ∈  { 𝑝  ∣  ∃ 𝑎 ∃ 𝑏 𝑝  =  { 𝑎 ,  𝑏 } } )  | 
						
						
							| 4 | 
							
								3
							 | 
							con3i | 
							⊢ ( ¬  ∅  ∈  { 𝑝  ∣  ∃ 𝑎 ∃ 𝑏 𝑝  =  { 𝑎 ,  𝑏 } }  →  ¬  ∅  ∈  ( Pairs ‘ 𝑉 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							df-nel | 
							⊢ ( ∅  ∉  { 𝑝  ∣  ∃ 𝑎 ∃ 𝑏 𝑝  =  { 𝑎 ,  𝑏 } }  ↔  ¬  ∅  ∈  { 𝑝  ∣  ∃ 𝑎 ∃ 𝑏 𝑝  =  { 𝑎 ,  𝑏 } } )  | 
						
						
							| 6 | 
							
								
							 | 
							df-nel | 
							⊢ ( ∅  ∉  ( Pairs ‘ 𝑉 )  ↔  ¬  ∅  ∈  ( Pairs ‘ 𝑉 ) )  | 
						
						
							| 7 | 
							
								4 5 6
							 | 
							3imtr4i | 
							⊢ ( ∅  ∉  { 𝑝  ∣  ∃ 𝑎 ∃ 𝑏 𝑝  =  { 𝑎 ,  𝑏 } }  →  ∅  ∉  ( Pairs ‘ 𝑉 ) )  | 
						
						
							| 8 | 
							
								1 7
							 | 
							ax-mp | 
							⊢ ∅  ∉  ( Pairs ‘ 𝑉 )  |