Metamath Proof Explorer


Theorem sprvalpwle2

Description: The set of all unordered pairs over a given set V , expressed by a restricted class abstraction. (Contributed by AV, 24-Nov-2021)

Ref Expression
Assertion sprvalpwle2 ( 𝑉𝑊 → ( Pairs ‘ 𝑉 ) = { 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } )

Proof

Step Hyp Ref Expression
1 sprvalpwn0 ( 𝑉𝑊 → ( Pairs ‘ 𝑉 ) = { 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ∃ 𝑎𝑉𝑏𝑉 𝑝 = { 𝑎 , 𝑏 } } )
2 hashle2prv ( 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) → ( ( ♯ ‘ 𝑝 ) ≤ 2 ↔ ∃ 𝑎𝑉𝑏𝑉 𝑝 = { 𝑎 , 𝑏 } ) )
3 2 adantl ( ( 𝑉𝑊𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ) → ( ( ♯ ‘ 𝑝 ) ≤ 2 ↔ ∃ 𝑎𝑉𝑏𝑉 𝑝 = { 𝑎 , 𝑏 } ) )
4 3 bicomd ( ( 𝑉𝑊𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ) → ( ∃ 𝑎𝑉𝑏𝑉 𝑝 = { 𝑎 , 𝑏 } ↔ ( ♯ ‘ 𝑝 ) ≤ 2 ) )
5 4 rabbidva ( 𝑉𝑊 → { 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ∃ 𝑎𝑉𝑏𝑉 𝑝 = { 𝑎 , 𝑏 } } = { 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } )
6 1 5 eqtrd ( 𝑉𝑊 → ( Pairs ‘ 𝑉 ) = { 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } )