| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							sprvalpwn0 | 
							⊢ ( 𝑉  ∈  𝑊  →  ( Pairs ‘ 𝑉 )  =  { 𝑝  ∈  ( 𝒫  𝑉  ∖  { ∅ } )  ∣  ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 𝑝  =  { 𝑎 ,  𝑏 } } )  | 
						
						
							| 2 | 
							
								
							 | 
							hashle2prv | 
							⊢ ( 𝑝  ∈  ( 𝒫  𝑉  ∖  { ∅ } )  →  ( ( ♯ ‘ 𝑝 )  ≤  2  ↔  ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 𝑝  =  { 𝑎 ,  𝑏 } ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							adantl | 
							⊢ ( ( 𝑉  ∈  𝑊  ∧  𝑝  ∈  ( 𝒫  𝑉  ∖  { ∅ } ) )  →  ( ( ♯ ‘ 𝑝 )  ≤  2  ↔  ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 𝑝  =  { 𝑎 ,  𝑏 } ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							bicomd | 
							⊢ ( ( 𝑉  ∈  𝑊  ∧  𝑝  ∈  ( 𝒫  𝑉  ∖  { ∅ } ) )  →  ( ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 𝑝  =  { 𝑎 ,  𝑏 }  ↔  ( ♯ ‘ 𝑝 )  ≤  2 ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							rabbidva | 
							⊢ ( 𝑉  ∈  𝑊  →  { 𝑝  ∈  ( 𝒫  𝑉  ∖  { ∅ } )  ∣  ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 𝑝  =  { 𝑎 ,  𝑏 } }  =  { 𝑝  ∈  ( 𝒫  𝑉  ∖  { ∅ } )  ∣  ( ♯ ‘ 𝑝 )  ≤  2 } )  | 
						
						
							| 6 | 
							
								1 5
							 | 
							eqtrd | 
							⊢ ( 𝑉  ∈  𝑊  →  ( Pairs ‘ 𝑉 )  =  { 𝑝  ∈  ( 𝒫  𝑉  ∖  { ∅ } )  ∣  ( ♯ ‘ 𝑝 )  ≤  2 } )  |