Step |
Hyp |
Ref |
Expression |
1 |
|
sprvalpwn0 |
⊢ ( 𝑉 ∈ 𝑊 → ( Pairs ‘ 𝑉 ) = { 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 𝑝 = { 𝑎 , 𝑏 } } ) |
2 |
|
hashle2prv |
⊢ ( 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) → ( ( ♯ ‘ 𝑝 ) ≤ 2 ↔ ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 𝑝 = { 𝑎 , 𝑏 } ) ) |
3 |
2
|
adantl |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ) → ( ( ♯ ‘ 𝑝 ) ≤ 2 ↔ ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 𝑝 = { 𝑎 , 𝑏 } ) ) |
4 |
3
|
bicomd |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ) → ( ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 𝑝 = { 𝑎 , 𝑏 } ↔ ( ♯ ‘ 𝑝 ) ≤ 2 ) ) |
5 |
4
|
rabbidva |
⊢ ( 𝑉 ∈ 𝑊 → { 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 𝑝 = { 𝑎 , 𝑏 } } = { 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) |
6 |
1 5
|
eqtrd |
⊢ ( 𝑉 ∈ 𝑊 → ( Pairs ‘ 𝑉 ) = { 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑝 ) ≤ 2 } ) |