Step |
Hyp |
Ref |
Expression |
1 |
|
isspth |
⊢ ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝑃 ) ) |
2 |
|
trliswlk |
⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
3 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
4 |
3
|
wlkp |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) |
5 |
|
df-f1 |
⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) –1-1→ ( Vtx ‘ 𝐺 ) ↔ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ Fun ◡ 𝑃 ) ) |
6 |
5
|
simplbi2 |
⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) → ( Fun ◡ 𝑃 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) –1-1→ ( Vtx ‘ 𝐺 ) ) ) |
7 |
2 4 6
|
3syl |
⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → ( Fun ◡ 𝑃 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) –1-1→ ( Vtx ‘ 𝐺 ) ) ) |
8 |
7
|
imp |
⊢ ( ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝑃 ) → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) –1-1→ ( Vtx ‘ 𝐺 ) ) |
9 |
1 8
|
sylbi |
⊢ ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) –1-1→ ( Vtx ‘ 𝐺 ) ) |